Wear Resistance of Laser Cladded NiCrFeSiB Self-Fluxing Composite Coatings

2016 ◽  
Vol 254 ◽  
pp. 290-295
Author(s):  
Iosif Hulka ◽  
Ion Dragoş Uţu ◽  
Viorel Aurel Şerban ◽  
Alexandru Pascu ◽  
Ionut Claudiu Roată

Laser cladding process is used to obtain protective coatings using as heat source a laser. This melts the substrate and the feedstock material to create a protective coating and provides a strong metallurgical bond with minimal dilution of the base material and reduced heat affected zone. In the present study a commercial NiCrSiFeB composition was deposited by laser cladding process using different parameters onto the surface of a steel substrate. The obtained coatings were investigated in terms of microstructure, hardness and wear behavior. The experimental results revealed that the laser power had a considerable influence on the wear resistance of NiCrSiFeB coatings.

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1611
Author(s):  
Jiayang Gu ◽  
Ruifeng Li ◽  
Shungao Chen ◽  
Yuhao Zhang ◽  
Shujin Chen ◽  
...  

A composite coating with enhanced mechanical properties including high hardness and excellent wear resistance was produced by laser cladding of mixed Ni45 and high-carbon ferrochrome powders on an ASTM 1045 steel substrate. Different quantities, ranging from 10 to 50 wt.% of high-carbon ferrochrome powder were added to the Ni45 powder to investigate the effect of mixture content on the cladding performance. The microstructure of the coatings were examined using scanning electron microscope, and the wear resistance was compared using a wear tester apparatus among the different cases. The results showed that the microstructure of the coating with 30 wt.% high-carbon ferrochrome content was mainly fine solid solution phase. With the increase of high-carbon ferrochrome content to 40 wt.% and above, cracks appeared on the cladding surface due to a large amount of chromium carbides formed during the process. The microhardness was enhanced remarkably by laser cladding the composite coating on the 1045 substrate, with 2.4 times higher than the hardness of the substrate when 30 wt.% high-carbon ferrochrome content was added. The best wear performance was achieved when the high-carbon ferrochrome content was 30 wt.%, demonstrating the smallest surface roughness and depth of wear marks. With further increased high-carbon ferrochrome content, microcracking and delamination were observed on the worn surfaces.


2008 ◽  
Vol 373-374 ◽  
pp. 304-307
Author(s):  
Sen Yang ◽  
Ming Run Wang ◽  
Tao Gong ◽  
Wen Jin Liu

In order to improve wear resistance of carbon steel, laser cladding experiments were carried out using a 3kW continuous wave CO2 laser. The diameter of the laser beam was 3-5mm, the scanning velocity was 3-10mm/s, and the laser output power was 1.0-1.3kW. The experimental results showed that MoSi2/SiCP composites coating could be in-situ synthesized from mixture powders of molybdenum, silicon and SiC by laser cladding. A good metallurgical bond between the coating and the substrate could be achieved. The microstructures of the coating were mainly composed of MoSi2, SiC and FeSiMo phases. The average microhardness of the coating was about HV0.21300, about 6.0 times larger than that of steel substrate.


2017 ◽  
Vol 24 (4) ◽  
pp. 541-546 ◽  
Author(s):  
Hongxia Zhang ◽  
Huijun Yu ◽  
Chuanzhong Chen

AbstractThe composite coatings were fabricated by laser cladding Ni60A/B4C pre-placed powders on the surface of Ti-6Al-4V alloy for improving wear resistance and hardness of the substrate. In this research, the composite coatings were studied by means of X-ray diffraction, scanning electron microscope and energy dispersive spectrometer. The sliding wear tests were performed using MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the laser cladding coating and Ti-6Al-4V substrate. The composite coatings were mainly composed of the matrix of γ-Ni and a little Ni3Ti and the reinforcements of TiB2, TiC and CrB. The hardness of the sample of Ni60A-5B4C was approximately 2.5–3.5 times that of the Ti-6Al-4V substrate. The hardness of the sample of Ni60A-10B4C was 30% higher than that of sample 1. The wear resistance of samples 1 and 2 were 11 times and 10 times that of the substrate, respectively.


2015 ◽  
Vol 22 (03) ◽  
pp. 1550044 ◽  
Author(s):  
H. X. ZHANG ◽  
H. J. YU ◽  
C. Z. CHEN

The composite coatings were fabricated by laser cladding Al / TiN pre-placed powders on Ti –6 Al –4 V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β- Ti  ( Al ) and the reinforcements of titanium nitride ( TiN ), Ti 3 Al , TiAl and Al 3 Ti . The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti –6 Al –4 V substrate. And the wear resistance of sample 4 was four times of the substrate.


2008 ◽  
Vol 373-374 ◽  
pp. 375-378 ◽  
Author(s):  
Bai Yang Lou ◽  
Bing Xu ◽  
Y.B. Zhou ◽  
W.J. Bai ◽  
H.L. Du

The high-energy laser melts the cladding materials which coagulate onto the surface of the base materials. The laser cladding coatings are produced mainly in two methods: powder feeding and prefabricating. The grain-strengthening composite coatings could be formed more easily by prefabricating method than by powder feeding method. In this paper, Ni/SiC ceramic composite coating on carbon steel (45 steel) was made by prefabricating method. The microstructure and wear-resistance of Ni/SiC cladding coating on the 45 steel were studied using scanning electronic microscope (SEM) and wear test. The results showed that the microstructure of cladding coatings included bonding layer, thermo-affected layer and heat-affected layer after laser cladding. The microstructure of cladding coating was mainly of dendrite and cell-like crystals. The resultant multilayered coating had excellent adherence with the base steel. The addition of SiC particles into cladding coatings significantly reinforced the microhardness of laser cladding coating. Compared with Ni60A cladding coating, Ni60A/SiC cladding coating had high microhardness, which was attributed to not only the dispersion intensification effect of the SiC particle, but also by the new complicated phases. During laser cladding process, SiC particles may decompose and dissolve into the coating and result in solid solution strengthening effect which increases the microhardness of the composite coatings. The base material and Ni-based laser cladding coatings with and without SiC were tested to assess the wear-resistance property. The test results demonstrated that the laser cladding coatings had better wear resistance than the base material. Furthermore, the laser cladding coating with SiC particles had higher wear-resistance than the coating without SiC.


2014 ◽  
Vol 66 (5) ◽  
pp. 609-617 ◽  
Author(s):  
De-Xing Peng ◽  
Yuan Kang ◽  
Yu-Jun Huang

Purpose – The purpose of this paper is to evaluate the wear performance of carbon steel cladded with TiC powders by gas tungsten arc welding method. Because of poor wear resistance, carbon steels have limited industrial applications as tribological components. Design/methodology/approach – The cladding microstructures were characterized by optical microscope, scanning electron microscope (SEM) and X-ray energy dispersive spectrometer. The wear behavior of the clad layer was studied with a block-on-ring tribometer. Findings – The experimental results revealed that the metallurgical interface provided an excellent bond between the cladding and the carbon steel substrate. The cladding revealed no porosity or cracking, and particles were evenly distributed throughout the cladding layer. Hardness was increased from HRc 6.6 in the substrate to HRc 62 in the cladded layer due to the presence of the hard TiC phase. Originality/value – The experiments confirm that the cladding surfaces of TiC particles reduce wear rate and friction. Increasing TiC contents also improves hardness and wear resistance at room temperature and under dry sliding wear conditions.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2443
Author(s):  
Jingjing Li ◽  
Jiang Ju ◽  
Weiwei Chang ◽  
Chao Yang ◽  
Jun Wang

In this study, a high aluminum and chromium Fe-B-C coating was prepared using laser cladding on 2Cr13 steel substrate. The microstructure, microhardness, and wear resistance of the high aluminum and chromium Fe-B-C coating were investigated. The results show that this dense coating possesses good metallurgical bond with the substrate. The microstructure is mainly composed of α-(Fe, Cr, Al) lath martensite, orthorhombic M2B boride, orthogonal M3C2, and orthorhombic M7C3 carbides. The microhardness of the coating can reach 620 HV which is 3.3-times higher than that (190 HV) of the substrate. The coating shows a lower friction coefficient of 0.75 than that of the substrate (1.08). The wear rates of the substrate and the coating are 0.295 mg/min and 0.103 mg/min, respectively, indicating the coating exhibits excellent wear resistance. The wear mechanism transforms severe adhesive wear and abrasive wear of the substrate to slight abrasive wear of the coating. The results can provide technical support to improve the properties of the Fe-based laser cladded coating.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 639
Author(s):  
Ainhoa Riquelme ◽  
Pilar Rodrigo ◽  
María Dolores Escalera-Rodriguez ◽  
Joaquín Rams

Aluminum matrix composites reinforced with SiC particles (SiCp) were deposited on ZE41 magnesium substrates by laser cladding in order to improve their tribological performance. Silicon and titanium were added to the matrix in order to avoid Al-SiC reactivity. The addition of these elements to avoid Al4C3 formation during the laser cladding fabrication was successfully explored in previous research, but the effect of these elements on the wear behavior and the corrosion resistance of these coatings has not been studied. During the fabrication process, there is dilution with the substrate that forms an Al-Mg matrix, which has an influence on the wear and corrosion behavior. Electrochemical polarization and impedance measurements in a 3.5% NaCl solution and the dry sliding conditions on a pin-on-disc tribometer were used to evaluate the different compositions of Al/SiCp coatings on the ZE41 magnesium alloy and uncoated ZE41. All of the composite coatings had lower wear rates than the substrate. However, the coatings showed worse corrosion behavior than the ZE41 substrate, although the addition of Si or Ti improves the corrosion behavior and the wear resistance.


2010 ◽  
Vol 139-141 ◽  
pp. 398-401
Author(s):  
You Feng Zhang ◽  
Jun Li

In situ reaction synthesized TiB reinforced titanium matrix composites were fabricated using rapid non-equilibrium synthesis techniques of laser cladding. TiB/Ti composite coating was treated on Ti-6Al-4V surface using Ti and B powder mixture by laser cladding. Microstructure and dry sliding wear behavior of the in situ synthesized TiB/Ti composite coatings were investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), energy-dispersive spectroscopy (EDS), hardness tester and friction and wear tester. The composite coatings consist of Ti, TiB and intermetallic compounds. The TiB reinforcement dispersed homogeneously in the composite coatings. The wear tests show that the friction coefficient and wear weight loss ratio of the coatings is lower than that of the Ti-6Al-4V alloy. The composite coating was reinforced by the in situ synthesized TiB ceramic particles. Based on the SEM observation, effects of scan speed on hardness and wear resistance of the laser cladding coatings were investigated and discussed.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4567
Author(s):  
Ran Liu ◽  
Xianting Dang ◽  
Yuan Gao ◽  
Tao Wu ◽  
Yuanzhi Zhu

In this study, the Ti-Al-Si + xTiC (x = 0, 2, 6, 10 wt.%) composite coatings, each with a different content of TiC were fabricated on a Ti-6Al-4V alloy by laser surface cladding. The microstructure of the prepared coatings was analyzed by the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The microhardness and the wear resistance of these coatings were also evaluated. The results show that α-Ti, Ti3Al, Ti5Si3, TiAl3, TiAl, Ti3AlC2 and TiC particles can be found in the composites. The microstructure can obviously be refined by increasing the content of TiC particles, while the microhardness increases and the coefficient of friction decreases. The Ti-Al-Si-6TiC composite shows the best wear resistance, owing to its relatively fine microstructure and high content of TiC particles. The microhardness of this coating is 5.3 times that of the substrate, while the wear rate is only 0.43 times. However, when the content of TiC was up to 10 wt.%, the original TiC could not be dissolved completely during the laser cladding process, leading to formation of cracks on the coatings.


Sign in / Sign up

Export Citation Format

Share Document