scholarly journals Effect of Cathode Microstructure on Electrochemical Properties of Sodium Nickel-Iron Chloride Batteries

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5605
Author(s):  
Byeong-Min Ahn ◽  
Cheol-Woo Ahn ◽  
Byung-Dong Hahn ◽  
Jong-Jin Choi ◽  
Yang-Do Kim ◽  
...  

Sodium metal chloride batteries have become a substantial focus area in the research on prospective alternatives for battery energy storage systems (BESSs) since they are more stable than lithium ion batteries. This study demonstrates the effects of the cathode microstructure on the electrochemical properties of sodium metal chloride cells. The cathode powder is manufactured in the form of granules composed of a metal active material and NaCl, and the ionic conductivity is attained by filling the interiors of the granules with a second electrolyte (NaAlCl4). Thus, the microstructure of the cathode powder had to be optimized to ensure that the second electrolyte effectively penetrated the cathode granules. The microstructure was modified by selecting the NaCl size and density of the cathode granules, and the resulting Na/(Ni,Fe)Cl2 cell showed a high capacity of 224 mAh g−1 at the 100th cycle owing to microstructural improvements. These findings demonstrate that control of the cathode microstructure is essential when cathode powders are used to manufacture sodium metal chloride batteries.

2010 ◽  
Vol 25 (8) ◽  
pp. 1636-1644 ◽  
Author(s):  
Brian J. Landi ◽  
Cory D. Cress ◽  
Ryne P. Raffaelle

Recent advancements using carbon nanotube electrodes show the ability for multifunctionality as a lithium-ion storage material and as an electrically conductive support for other high capacity materials like silicon or germanium. Experimental data show that replacement of conventional anode designs, which use graphite composites coated on copper foil, with a freestanding silicon-single-walled carbon nanotube (SWCNT) anode, can increase the usable anode capacity by up to 20 times. In this work, a series of calculations were performed to elucidate the relative improvement in battery energy density for such anodes paired with conventional LiCoO2, LiFePO4, and LiNiCoAlO2 cathodes. Results for theoretical flat plate prismatic batteries comprising freestanding silicon-SWCNT anodes with conventional cathodes show energy densities of 275 Wh/kg and 600 Wh/L to be theoretically achievable; this is a 50% improvement over today's commercial cells.


2016 ◽  
Vol 724 ◽  
pp. 87-91 ◽  
Author(s):  
Chang Su Kim ◽  
Yong Hoon Cho ◽  
Kyoung Soo Park ◽  
Soon Ki Jeong ◽  
Yang Soo Kim

We investigated the electrochemical properties of carbon-coated niobium dioxide (NbO2) as a negative electrode material for lithium-ion batteries. Carbon-coated NbO2 powders were synthesized by ball-milling using carbon nanotubes as the carbon source. The carbon-coated NbO2 samples were of smaller particle size compared to the pristine NbO2 samples. The carbon layers were coated non-uniformly on the NbO2 surface. The X-ray diffraction patterns confirmed that the inter-layer distances increased after carbon coating by ball-milling. This lead to decreased charge-transfer resistance, confirmed by electrochemical impedance spectroscopy, allowing electrons and lithium-ions to quickly transfer between the active material and electrolyte. Electrochemical performance, including capacity and initial coulombic efficiency, was therefore improved by carbon coating by ball-milling.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 482 ◽  
Author(s):  
M. Verasamy ◽  
M. Faisal ◽  
Pin Jern Ker ◽  
M A Hannan

Electric vehicle (EV) is now replacing the conventional fuel driven vehicle as it has strong contribution to face the challenges of global warming issues. This system has the energy storage device which can be introduced by lithium-ion (li-ion) battery banks. Lithium-ion is mostly popular because of its high capacity and efficiency. Nevertheless, li-ion battery needs protective mechanism to control overcharged or undercharged of the cell that can reduce the life expectancy and efficiency.  Hence, a control model needs to develop to enhance the protection of battery. Therefore, the key issue of the research is to investigate the performance of Li-ion battery energy management system (BMS) for electrical vehicle applications by monitoring and balancing the cell voltage level of battery banks using Simulink software. A bidirectional flyback DC-DC converter is investigated in the BMS model to control the undercharging or overcharging of cells. An intelligent charge control algorithm is used for this purpose. Backtracking search optimization algorithm (BSA) is implemented to optimize the parameters for generating regulated PWM signal. Obtained results were observed within the safety operating range of Li-ion battery (3.73 V – 3.87V).


2015 ◽  
Vol 1120-1121 ◽  
pp. 115-118 ◽  
Author(s):  
Yong Hoon Cho ◽  
Soon Ki Jeong ◽  
Yang Soo Kim

The electrochemical properties niobium dioxide (NbO2) was investigated as a negative electrode material for lithium ion batteries. The NbO2electrode showed a large irreversible capacity and small discharge capacity. The results of X-ray photoelectron spectroscopy indicate that the poor electrode performance of NbO2may be caused by niobium pentoxide (Nb2O5) formed on the surface of active material. The Nb2O5could be removed by chemical etching to some extent, thus improving the electrode performance.


2019 ◽  
Vol 3 (8) ◽  
pp. 1929-1936
Author(s):  
Go Tei ◽  
Ryohei Miyamae ◽  
Akira Kano

Graphite-like Ca0.6B1.2C4.8 is reported as a novel anode active material for lithium-ion batteries.


Author(s):  
Mir Mehraj Ud Din ◽  
Sampathkumar Ramakumar ◽  
Indu M.S ◽  
Ramaswamy Murugan

: Reliable energy storage is a censorious need for an extensive range of requisite such as portable electronic devices, transportation, medical devices, spacecraft and elsewhere. Among known storage devices, the lithium ion (Li+) batteries have enticed attention because of higher theoretical energy density. Nevertheless, state-of-the-art electrolyte in lithium batteries utilizing a Li+ salt dissolved in organic-type solvents poses severe safety concerns like flammability arising from dendrite formation. Next generation (beyond Li+) battery systems such as lithium sulphur (Li-S) batteries have gained interest in recent times. This battery system has been extensively revisited in an attempt to develop high energy batteries and is now considered as the technology of choice for hybrid vehicle electrification and grid storage. Higher theoretical capacity and higher theoretical energy density, environmental friendliness and low cost of active material make the Li-S batteries an ideal candidate to meet increasing energy requirements. This review looks at various advanced electrolytic systems with much emphasis on solid state electrolytic systems for Li-S batteries because of their striking properties. The technical issues of the sulphur cathode are also summarized and the strategies followed in recent years are highlighted in this review to address these issues. It is anticipated that Li-S batteries with efficient solid electrolytic system may replace the conventional insertion-type low energy density Li+ batteries in near future.


2013 ◽  
Vol 1 (6) ◽  
pp. 2139-2143 ◽  
Author(s):  
Lijing Wang ◽  
Bin Liu ◽  
Sihan Ran ◽  
Liming Wang ◽  
Lina Gao ◽  
...  

2012 ◽  
Vol 622-623 ◽  
pp. 1262-1268
Author(s):  
Bo Rong Wu ◽  
Fei Biao Chen ◽  
Yun Kui Xiong ◽  
Wei Ling Liao

With the features of good electrical conductivity, and insolubilization in the electrolytic solution, Poly-Peri-Naphthalene (PPN) can be regarded as the cathode material, and there is a certain necessity to study the electrochemical properties of PPN. PPN can be synthesized easily by 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA), and the related characterizations regarding to PPN is described in this paper. Meanwhile, research on the electrochemical properties of the synthesized PPN under several different temperatures has been carried out, and some basic laws have been found as follows: 1) Under the condition of 600°C≦T≦1100°Csynthesis temperature, the electrical conductivity of PPN is strengthrened with the increased temperature; 2) The discharge capacity of PPN is also increased with the increased synthesis temperature. 3) As a kind of battery cathode active material, the cyclical stability of PPN is excellent. But the capacity is small, aiming at the deficiency, nitrification treatment on the PPN has been carried out, thus the high-capacity PPN is obtained, the first discharge capacity is 342mAhg-1. Therefore, we can safely predict that the future of PPN as a lithium battery cathode material is promising.


Sign in / Sign up

Export Citation Format

Share Document