scholarly journals Cause and Mitigation of Lithium-Ion Battery Failure—A Review

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5676
Author(s):  
Muthukrishnan Kaliaperumal ◽  
Milindar S. Dharanendrakumar ◽  
Santosh Prasanna ◽  
Kaginele V. Abhishek ◽  
Ramesh Kumar Chidambaram ◽  
...  

Lithium-ion batteries (LiBs) are seen as a viable option to meet the rising demand for energy storage. To meet this requirement, substantial research is being accomplished in battery materials as well as operational safety. LiBs are delicate and may fail if not handled properly. The failure modes and mechanisms for any system can be derived using different methodologies like failure mode effects analysis (FMEA) and failure mode methods effects analysis (FMMEA). FMMEA is used in this paper as it helps to identify the reliability of a system at the component level focusing on the physics causing the observed failures and should thus be superior to the more data-driven FMEA approach. Mitigation strategies in LiBs to overcome the failure modes can be categorized as intrinsic safety, additional protection devices, and fire inhibition and ventilation. Intrinsic safety involves modifications of materials in anode, cathode, and electrolyte. Additives added to the electrolyte enhance the properties assisting in the improvement of solid-electrolyte interphase and stability. Protection devices include vents, circuit breakers, fuses, current interrupt devices, and positive temperature coefficient devices. Battery thermal management is also a protection method to maintain the temperature below the threshold level, it includes air, liquid, and phase change material-based cooling. Fire identification at the preliminary stage and introducing fire suppressive additives is very critical. This review paper provides a brief overview of advancements in battery chemistries, relevant modes, methods, and mechanisms of potential failures, and finally the required mitigation strategies to overcome these failures.

Inorganics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Alain Mauger ◽  
Christian M. Julien

Rechargeable lithium-metal batteries (LMBs), which have high power and energy density, are very attractive to solve the intermittence problem of the energy supplied either by wind mills or solar plants or to power electric vehicles. However, two failure modes limit the commercial use of LMBs, i.e., dendrite growth at the surface of Li metal and side reactions with the electrolyte. Substantial research is being accomplished to mitigate these drawbacks. This article reviews the different strategies for fabricating safe LMBs, aiming to outperform lithium-ion batteries (LIBs). They include modification of the electrolyte (salt and solvents) to obtain a highly conductive solid–electrolyte interphase (SEI) layer, protection of the Li anode by in situ and ex situ coatings, use of three-dimensional porous skeletons, and anchoring Li on 3D current collectors.


2011 ◽  
Vol 110-116 ◽  
pp. 2969-2975 ◽  
Author(s):  
N.S. Bhangu ◽  
Rupinder Singh ◽  
G.L. Pahuja

Failure Mode and Effect Analysis (FMEA) has a well deserved reputation for systematic and thorough evaluation of failures at the system, sub-system or component level in all manufacturing and processing sectors. These organizations are looking for the final product to be “safe and reliable”. FMEA helps designers to identify and eliminate/control dangerous failure modes, minimizing damage to the system and its users. This paper, as an extension to the prior research work, introduces an insight into the reasons of failure and its effects in a thermal power plant opted for the case study, based on conceptual designs in context of FMEA. The analysis takes into account preparation of appropriate diagnostic and maintenance procedures with the aim of enhancement of thermal plant reliability. The FMEA technique used may be helpful for the design and maintenance departments to curtail the downtime of the plant.


2021 ◽  
Vol 8 (7) ◽  
pp. 436-445
Author(s):  
Humberto Guanche Garcell ◽  
Farid Ahmad Sohail ◽  
Tania M Fernandez Hernandez

Background: The exposure to COVID-19 by staff has a major impact on healthcare system. Objective: identify potential failures related to the exposure of HCWs to COVID-19, evaluate the potential causes and effects, and the actions to mitigate the risk of exposure. Methods: Members of the infection control department, quality department, nursing department, and medical administration were selected as team members to conduct the Failure Mode and Effect Analysis (FMEA). The identification of potential failure modes, causes and effects was conducted in consecutive meetings. Accordingly, were identified actions to reduce the staff exposure to COVID-19. Results: The description of the complex process was conducted including the potential in-hospital and hospital-community interaction for transmission of infection to staff. In eight areas were identified 20 potential failure modes: Hand hygiene, personal protective equipment, detection of sick staff, exposure in common areas, hiring new staff, staff living conditions, and staff knowledge, skill, and perceptions about all other infection control practices. The highest ranked priorities were identified including improper PPE use (556 points), late detection of sick staff (520 points), and poor compliance with infection control practices in common areas (436 points) respectively. The mitigation strategies focused on a wide range of actions to improve the staff education, improve practices and procedures, monitor practices and feedback to staff in a continuous quality improvement cycle. Conclusion: Data presented provides a comprehensive evaluation of the risks and mitigation measures to prevent the staff exposure to COVID-19 conducted in a high-risk environment by a qualified FMEA team. Keywords: failure modes and effect analysis; quality management; risk mitigation; staff exposure; COVID-19; Qatar;


Author(s):  
Cha-Ming Shen ◽  
Tsan-Cheng Chuang ◽  
Jie-Fei Chang ◽  
Jin-Hong Chou

Abstract This paper presents a novel deductive methodology, which is accomplished by applying difference analysis to nano-probing technique. In order to prove the novel methodology, the specimens with 90nm process and soft failures were chosen for the experiment. The objective is to overcome the difficulty in detecting non-visual, erratic, and complex failure modes. And the original idea of this deductive method is based on the complete measurement of electrical characteristic by nano-probing and difference analysis. The capability to distinguish erratic and invisible defect was proven, even when the compound and complicated failure mode resulted in a puzzling characteristic.


Author(s):  
Martin Versen ◽  
Dorina Diaconescu ◽  
Jerome Touzel

Abstract The characterization of failure modes of DRAM is often straight forward if array related hard failures with specific addresses for localization are concerned. The paper presents a case study of a bitline oriented failure mode connected to a redundancy evaluation in the DRAM periphery. The failure mode analysis and fault modeling focus both on the root-cause and on the test aspects of the problem.


Author(s):  
Bhanu P. Sood ◽  
Michael Pecht ◽  
John Miker ◽  
Tom Wanek

Abstract Schottky diodes are semiconductor switching devices with low forward voltage drops and very fast switching speeds. This paper provides an overview of the common failure modes in Schottky diodes and corresponding failure mechanisms associated with each failure mode. Results of material level evaluation on diodes and packages as well as manufacturing and assembly processes are analyzed to identify a set of possible failure sites with associated failure modes, mechanisms, and causes. A case study is then presented to illustrate the application of a systematic FMMEA methodology to the analysis of a specific failure in a Schottky diode package.


Author(s):  
Elena Bartolomé ◽  
Paula Benítez

Failure Mode and Effect Analysis (FMEA) is a powerful quality tool, widely used in industry, for the identification of failure modes, their effects and causes. In this work, we investigated the utility of FMEA in the education field to improve active learning processes. In our case study, the FMEA principles were adapted to assess the risk of failures in a Mechanical Engineering course on “Theory of Machines and Mechanisms” conducted through a project-based, collaborative “Study and Research Path (SRP)” methodology. The SRP is an active learning instruction format which is initiated by a generating question that leads to a sequence of derived questions and answers, and combines moments of study and inquiry. By applying the FMEA, the teaching team was able to identify the most critical failures of the process, and implement corrective actions to improve the SRP in the subsequent year. Thus, our work shows that FMEA represents a simple tool of risk assesment which can serve to identify criticality in educational process, and improve the quality of active learning.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 443
Author(s):  
Mihaela-Daniela Dobre ◽  
Philippe Coll ◽  
Gheorghe Brezeanu

This paper proposes an investigation of a CDM (charge device model) electrostatic discharge (ESD) protection method used in submicronic input–output (I/O) structures. The modeling of the commonly used ESD protection devices as well as the modeling of the breakdown caused by ESD is not accurate using traditional commercial tools, hence the need for test-chip implementation, whenever a new technology node is used in production. The proposed method involves defining, implementing, testing, and concluding on one test-chip structure named generically “CDM ground resistance”. The structure assesses the maximum ground resistance allowed for the considered technology for which CDM protection is assured. The findings are important because they will be actively used as CDM protection for all I/O structures developed in the considered submicronic technology node. The paper will conclude on the constraints in terms of maximum resistance of ground metal track allowed to be CDM protected.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 118
Author(s):  
Feng Zhu ◽  
Runzhou Zhou ◽  
David J. Sypeck

In this work, a computational study was carried out to simulate crushing tests on lithium-ion vehicle battery modules. The tests were performed on commercial battery modules subject to wedge cutting at low speeds. Based on loading and boundary conditions in the tests, finite element (FE) models were developed using explicit FEA code LS-DYNA. The model predictions demonstrated a good agreement in terms of structural failure modes and force–displacement responses at both cell and module levels. The model was extended to study additional loading conditions such as indentation by a cylinder and a rectangular block. The effect of other module components such as the cover and cooling plates was analyzed, and the results have the potential for improving battery module safety design. Based on the detailed FE model, to reduce its computational cost, a simplified model was developed by representing the battery module with a homogeneous material law. Then, all three scenarios were simulated, and the results show that this simplified model can reasonably predict the short circuit initiation of the battery module.


Sign in / Sign up

Export Citation Format

Share Document