scholarly journals Numerical Study of Joule Heating Effects on Microfluidics Device Reliability in Electrode Based Devices

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5819
Author(s):  
Caffiyar Mohammed Yousuff ◽  
Vineet Tirth ◽  
Mohamed Zackria Ansar Babu Irshad ◽  
Kashif Irshad ◽  
Ali Algahtani ◽  
...  

In electrode-based microfluidic devices, micro channels having narrow cross sections generate undesirable temperature inside the microfluidic device causing strong thermal distribution (joule heating) that eventually leads to device damage or cell loss. In this work, we investigate the effects of joule heating due to different electrode configuration and found that, electrodes with triangular arrangements produce less heating effect even at applied potential of 30 V, without compromising the performance of the device and separation efficiency. However, certain electrode materials have low thermal gradients but erode the channel quickly thereby affecting the reliability of the device. Our simulation also predicts optimal medium conductivity (10 mS/m with 10 V) for cells to survive inside the channel until they are selectively isolated into the collection outlet. Our investigations will aid the researchers in the designing of efficient and reliable microfluidic devices to overcome joule heating inside the microchannels.

Author(s):  
Mohamed Yousuff Caffiyar ◽  
Kashif Irshad ◽  
Vineet Tirth ◽  
Mohamed Zackria Ansar B.I ◽  
Ali Algahtani ◽  
...  

The application of electrode-based microfluidic devices in biological entity often imposes a problem due to joule heating. The strong applied potentials or micro channels having narrow cross sections generate undesirable temperature inside the microfluidic channels leading to strong thermal distribution inside the micro channel. When intrinsic distribution of temperature, if not fix with threshold value, causes device damage or cell loss. In this work, we investigate the effects of temperature generated due to joules heating effects and we attempt to address the design constraints for minimizing the joule heating effects in the microfluidic device for developing effective microfluidic device. The device reliability was analyzed under different parametric constraints for various types of substrate materials (PDMS, PMMA, Polyimide and glass). We also attempt to investigate the effects of cell reliability due to strong temperature gradients generated through different applied potentials on different cell types. Furthermore, the response of the device performance due to different electrode configuration and different conductivity of the medium was also studied. Our investigation will eventually provide guidelines for microfluidic researchers to fabricate efficient electrode based microfluidic device which will ultimately help to choose a critical channel dimensions, threshold potentials, and conductivity of solutions in order to avoid device damage and cell loss.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Jing-Kui Zhang ◽  
Ben-Wen Li ◽  
Yuan-Yuan Chen

A numerical study is conducted for the Joule heating effects on fluid flow and heat transfer of radiatively participating magnetohydrodynamics (MHD) under different levels of thermal radiation considering the Hall effects in a square cavity. In the cavity, the vertical walls are isothermal with constant but different temperatures, while the horizontal walls are adiabatic. The absorption, emission, and scattering of the fluid and the reflection, absorption, and emission of the walls are all taken into account. The governing equations for momentum and energy together with the boundary conditions are solved by the finite volume method (FVM), while the governing equation for radiative transfer is solved by the discrete ordinates method (DOM). Tabular and graphical results are presented in terms of streamlines, isotherms, Nusselt number, and the average temperature of the fluid. After detailed analysis, we found that the Joule heating has notable effects on fluid flow and heat transfer in the cavity and Joule heating cannot be neglected in certain range of parameters.


2021 ◽  
Vol 11 (8) ◽  
pp. 3404
Author(s):  
Majid Hejazian ◽  
Eugeniu Balaur ◽  
Brian Abbey

Microfluidic devices which integrate both rapid mixing and liquid jetting for sample delivery are an emerging solution for studying molecular dynamics via X-ray diffraction. Here we use finite element modelling to investigate the efficiency and time-resolution achievable using microfluidic mixers within the parameter range required for producing stable liquid jets. Three-dimensional simulations, validated by experimental data, are used to determine the velocity and concentration distribution within these devices. The results show that by adopting a serpentine geometry, it is possible to induce chaotic mixing, which effectively reduces the time required to achieve a homogeneous mixture for sample delivery. Further, we investigate the effect of flow rate and the mixer microchannel size on the mixing efficiency and minimum time required for complete mixing of the two solutions whilst maintaining a stable jet. In general, we find that the smaller the cross-sectional area of the mixer microchannel, the shorter the time needed to achieve homogeneous mixing for a given flow rate. The results of these simulations will form the basis for optimised designs enabling the study of molecular dynamics occurring on millisecond timescales using integrated mix-and-inject microfluidic devices.


Sign in / Sign up

Export Citation Format

Share Document