scholarly journals Effect of Printing Parameters on Mechanical Behaviour of PLA-Flax Printed Structures by Fused Deposition Modelling

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5883
Author(s):  
Yassine Elias Belarbi ◽  
Sofiane Guessasma ◽  
Sofiane Belhabib ◽  
Ferhat Benmahiddine ◽  
Ameur El Amine Hamami

Few studies have reported the performance of Polylactic acid (PLA) flax feedstock composite for additive manufacturing. In this work, we report a set of experiments conducted by fused filament technology on PLA and PLA-flax with the aim of drawing a clear picture of the potential of PLA-flax as a feedstock material. Nozzle and bed temperatures are both combined with the printing angle to investigate their influence on structural and mechanical properties. The study shows a low sensitivity of PLA-flax to process parameters compared to PLA. A varied balance between shearing and uniaxial deformation is found consistent with tensile results where filament crossing at −45/+45° provides the optimal load-bearing capabilities. However, Scanning Electron Microscopy (SEM) and high-speed camera recording shows a limiting reinforcing effect of flax fibre due to the presence of intra-filament porosity and a significant amount of fibre pull-out resulting from the tensile loading. These results suggest that the quality of the bond between PLA matrix and flax fibre, intra-filament porosity, and surface roughness should receive more attention as well as the need for more continuous fibre reinforcement in PLA filaments to optimise the performance of PLA-flax printed materials.

Procedia CIRP ◽  
2019 ◽  
Vol 85 ◽  
pp. 353-358
Author(s):  
Maziri Morsidi ◽  
Paul T Mativenga ◽  
Muhammad Fahad

Author(s):  
Ravinder Sharma ◽  
Rupinder Singh ◽  
Ajay Batish ◽  
Nishant Ranjan

This work presents the synergistic effect of BaTiO3 and graphene (Gr) reinforcement in polyvinyl diene fluoride (PVDF) matrix by chemical-assisted mechanical blending (CAMB) for possible 4D applications. The PVDF matrix was prepared (in form of filament) by solvent casting followed by twin-screw extrusion (TSE) as CAMB process. The filament was used on fused deposition modelling (FDM) setup for preparing standard flexural and pull-out specimens. The mechanical testing revealed that the parts printed with 100% in-fill density (ID), 70 mm/s infill speed (IS), and 45° in-fill angle (IA) has shown better flexural strength (FS). For pull-out properties, part printed at IS 90 mm/s, 0° IA, and 100% ID have shown better results. Further optimized settings of FS were used to 3D print thin cylindrical discs followed by electric poling (for possible piezoelectric properties). The results of X-ray diffraction (XRD) and Fourier transmission infrared spectroscopy (FTIR) analysis show more β-phase formation in the electrically poled sample as compared to non-poled specimen. Moreover, XRD spectra show the homogenous dispersion of doped material in the PVDF matrix. The piezoelectric coefficient (d33) 30.2pC/N was observed on 3D printed specimen (prepared from filament processed with CAMB), suitable for 4D applications.


2018 ◽  
Vol 928 ◽  
pp. 26-31 ◽  
Author(s):  
Frantisek Sedlacek ◽  
Václava Lašová

The aim of this research was to determine the influence of the short carbon fibres in nylon PA6 polymer used for fused deposition modelling (additive manufacturing) technology. Specimens from pure PA6 and PA6 with short carbon fibres were fabricated, with both main directions of the material with respect to the build orientation in a 3D printer. Experimental tensile tests of the specimens were carried out at several temperatures according to ISO standards. The strength, tensile modulus and ductility in relation to the temperature were compared. A significant influence of the short carbon fibres on the strength and heat deflection temperature of the part was found in PA6 and also for the orientation of the build in the 3D printer.


2018 ◽  
Vol 157 ◽  
pp. 02032
Author(s):  
Michał Modławski ◽  
Tomasz Jaruga

The results of computer simulation of thermoforming process made using ANSYS Polyflow software are presented in this paper. The analysis of the wall thickness distribution across an U-shaped thermoformed product manufactured using a positive mould was made. The simulation results were verified using a mould manufactured in a 3D printing process which was Fused Deposition Modelling (FDM) and a poly(ethylene terephthalate) formed sheet. It was proven that the computer simulation and a tool made with a Rapid Tooling technology can be useful for predicting the quality of a thermoformed part, particularly to find the problems with thin-walled areas.


2019 ◽  
Vol 1 (1) ◽  
pp. 4-7
Author(s):  
Chockalingam Palanisamy ◽  
Natarajan Chinnasamy ◽  
Karthikeyan Muthu

In this research the influencing process parameters on fused deposition modelling of Acrylonitrile Butadiene Styrene (ABS) parts were studied. The two process parameters, layer thickness and model interior fill style are studied. The specimens were built, tests carried out to find out the surface roughness quality of the specimens. The results analyzed using Response Surface Methodology (RSM). The result indicates that the specimen Type 1 with the 0.254mm layer thickness and solid model interior fill style is the best specimen among the types of specimens tested.


2021 ◽  
Vol 1208 (1) ◽  
pp. 012019
Author(s):  
Adi Pandzic ◽  
Damir Hodzic

Abstract One of the advantages provided by fused deposition modelling (FDM) 3D printing technology is the manufacturing of product materials with infill structure, which provides advantages such as reduced production time, product weight and even the final price. In this paper, the tensile mechanical properties, tensile strength and elastic modulus, of PLA, Tough PLA and PC FDM 3D printed materials with the infill structure were analysed and compared. Also, the influence of infill pattern on tensile properties was analysed. Material testing were performed according to ISO 527-2 standard. All results are statistically analysed and results showed that infill pattern have influence on tensile mechanical properties for all three materials.


2020 ◽  
Vol 22 (4) ◽  
pp. 895-908
Author(s):  
M. Ouhsti ◽  
B. El Haddadi ◽  
S. Belhouideg

Abstract3D polymer-based printers have become easily accessible to the public. Usually, the technology used by these 3D printers is Fused Deposition Modelling (FDM). The majority of these 3D printers mainly use acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) to fabricate 3D objects. In order for the printed parts to be useful for specific applications, the mechanical properties of the printed parts must be known. The aim of this study is to determine the tensile strength and elastic modulus of printed materials in polylactic acid (PLA) according to three important printing parameters such as deposition angle, extruder temperature and printing speed. The central composite design (CCD) was used to reduce the number of tensile test experiments. The obtained results show that the mechanical properties of printed parts depend on printing parameters. Empirical models relating response and process parameters are developed. The analysis of variance (ANOVA) was used to test the validity of models relating response and printing parameters. The optimal printing parameters are determined for the desired mechanical properties.


2015 ◽  
Vol 21 (1) ◽  
pp. 56-69 ◽  
Author(s):  
M. Jiménez ◽  
L. Romero ◽  
M. Domínguez ◽  
M.M. Espinosa

Purpose – This paper aims to present an optimal prototyping technology for the manufacture of occlusal splints. Design/methodology/approach – To carry out this study, a comparative technique was used to analyze models obtained by different prototyping techniques. Subsequently, further tests were carried out with respect to the manufacturing of splints by means of thermoforming in a vacuum. This involved an analysis of the most important variables such as prototype material, geometric accuracy, surface finish and costs. Findings – It was found that there is a group of prototyping technologies that are suitable for the manufacture of the models used in the thermoforming of correction splints, the most appropriate technologies being based on ink jet printing (IJP-Objet), ultraviolet photo polymerization and fused deposition modelling due to the fact that they offer an optimal relationship between the cost and the quality of the model required for thermoforming. Practical implications – The application of rapid prototyping techniques in medicine makes the production of physical models from three-dimensional medical image processing and their subsequent use in different specialties possible. It also makes preoperative planning processes, the production of prostheses and the preparation of surgical templates possible, thereby offering a higher quality of diagnosis, safer surgery and cost and time savings compared to conventional manufacturing technologies. Originality/value – This paper suggests that there exists a group of prototyping technologies for the manufacture of splints that offer advantages over existing technologies. The results also suggest that, in many cases, the most expensive technology is not the most appropriate: there are other options that provide an optimal model in terms of the cost and the quality needed for thermoforming.


Sign in / Sign up

Export Citation Format

Share Document