scholarly journals Investigation on Microstructure, Nanohardness and Corrosion Response of Laser Cladded Colmonoy-6 Particles on 316L Steel Substrate

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6183
Author(s):  
Jeyaprakash Natarajan ◽  
Che-Hua Yang ◽  
Sundara Subramanian Karuppasamy

316L steel is predominantly used in manufacturing the components of high-pressure boilers, heat exchangers, aerospace engines, oil and gas refineries, etc. Its notable percentage of chromium offers resistance against corrosion and is mostly implemented in harsh environments. However, long-term exposure to these components in such environments can reduce their corrosion resistance property. Particularly at high temperatures, the oxide film formed on this type of steel reacts with the chloride, sulfides, sulfates, fluorides and forms intermetallic compounds which affect its resistance, followed by failures and losses. This work is focused on investigating the hardness, microstructure and corrosion resistance of the laser cladded Colmonoy-6 particles on the 316L steel substrate. The cladded specimens were dissected into cubic shapes and the microstructure present in the cladded region was effectively analyzed using the FESEM along with the corresponding EDS mapping. For evaluating the hardness of the cladded samples, the nanoindentation technique was performed using the TI980 TriboIndenter and the values were measured. The potentiodynamic polarization curves were plotted for both the substrate and clad samples at 0, 18, 42 and 70 h for revealing the corrosion resistance behavior. In addition, the EIS analysis was carried out to further confirm the resistance offered by the samples. The surface roughness morphology was evaluated after the corrosion process using the laser microscope, and the roughness values were measured and compared with the substrate samples. The result showed that the cladded samples experience greater hardness, lower values of surface roughness and provide better corrosion resistance when compared with substrate samples. This is due to the deposition of precipitates of chromium-rich carbide and borides that enhances the above properties and forms a stable passive film that resists corrosion during the corrosion process.

2021 ◽  
Vol 892 ◽  
pp. 115-123
Author(s):  
Viktor Malau ◽  
Wisnu Hakiki

Piping systems at gathering stations in the oil and gas industries often fail due to corrosion attacks from the brine water solution containing 8% NaCl that flows through the system. This solution is highly corrosive on the API 5L grade B steel pipes, thereby shortening its lifespan, with an increase in the frequency of pipe replacements. However, the corrosion resistance of API 5L grade B pipes can be improved by using chromate and molybdate inhibitors. Therefore, the objective of this research is to improve the corrosion resistance of the steel pipes using sodium chromate (Na2CrO4) and sodium molybdate (Na2MoO4) inhibitors with concentrations of 0.2, 0.4, 0.6, 0.8 and 1,0%. This research also aim to determine the optimum concentration of inhibitors to produce minimum corrosion rate, by testing the brine water solution containing 8% NaCl through the potentiodynamic polarization method. The results show that generally, the addition of sodium chromate and sodium molybdate inhibitors to the brine solution causes the steel pipes to be more resistant to corrosion. Furthermore, the sodium chromate inhibitor concentration of 0.6% produces the greatest corrosion potential of – 400 mV with the lowest rate of 0.38 mpy, while sodium molybdate concentration of 0.4% produces the highest corrosion potential of – 385 mV with the lowest rate of 0.34 mpy. The results of SEM observations at 0.4% sodium molybdate concentration showed that the corrosion inhibition/passivation effect of the inhibitor made the steel surface smoother, while the sodium chromate inhibitor at similar percentage failed to reach the optimal concentration to inhibit the corrosion process.


2012 ◽  
Vol 57 (3) ◽  
pp. 665-670 ◽  
Author(s):  
N. Radek ◽  
N. Konstanty

The main objective of the present work was to determine the influence of laser treatment on microstructure, microhardness, roughness, bonding strength, corrosion resistance and tribological properties of wear resistant coatings produced on C45 carbon steel by the electro-spark deposition (ESD) process. Consumable WC-Co-Al2O3 electrodes were prepared by the powder metallurgy route and transferred to the substrate surface using the EIL-8A apparatus. The cermet layers were subsequently melted by means of the BLS 720 Nd:YAG laser. The coating characterisation studies showed marked improvements in the bonding between the steel substrate and the cermet coating, and in corrosion resistance at the expense of higher surface roughness and minor drop in the Vickers microhardness.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1005 ◽  
Author(s):  
Xingyu Wang ◽  
Xiaoning Qi ◽  
Zhibin Lin ◽  
Dante Battocchi

Corrosion and corrosion-induced damage have resulted mostly in malfunctions and sometimes even in failures of metallic structures, including oil and gas pipelines. In this study, new high-performance composite coatings were developed by incorporating nanoparticles in the polymer resins with applications to oil and gas pipelines. The graphene nanoplatelets under different concentrations were used to prepare the epoxy-based nanocomposites and were then evaluated through mechanical and electrical tests. The integration of high-speed disk and ultrasonication were adopted as the dispersion technique to overcome nanoparticle agglomeration. Electron microscopy techniques were used to investigate the agglomeration. The new composites were qualitatively and quantitatively evaluated in terms of contact angle, surface roughness, adhesion to the substrate, corrosion resistance, and abrasion resistance. The results suggested that the composite with 0.5~1.0 wt.% of the graphene nanofillers led to the largest improvement in both mechanical and electrochemical properties. Distribution of nanoparticles in the matrix was observed using scanning electron microscopy and surface roughness using atomic force microscopy. Large agglomeration that was observed at the higher concentrations mainly resulted in the reduction of corrosion resistance and abrasion resistance.


2017 ◽  
Vol 69 (3) ◽  
pp. 393-398 ◽  
Author(s):  
Mei Hyie Koay ◽  
Mohd Adham Akmal Tukiran ◽  
Siti Nur Amalina Mohd Halidi ◽  
Mardziah Che Murad ◽  
Zuraidah Salleh ◽  
...  

Purpose The purpose of this study is to determine the effect of current density on the surface roughness and corrosion performance of electrodeposited Co–Ni–Fe-coated mild steel. Process variables are the key factor in controlling the electrodeposition process. It is important to study the processing parameter to optimize the mechanical and corrosion resistance performance of the coating substrate. Design/methodology/approach A low-cost electrodeposition method was used to the synthesize Co–Ni–Fe coating on the mild steel substrate. In the electrodeposition, electrochemistry concept was applied. The temperature of the process was controlled at 50 ± 5°C in an acidic environment. The influence of current density (11, 22 and 33 mA/cm2) and deposition time (15, 20 and 30 min) toward the surface roughness, hardness and corrosion rate was investigated. Findings The increases of time deposition and current density have improved the microhardness and corrosion resistance of Co–Ni–Fe-coated mild steel. The Co–Ni–Fe nanoparticles deposited at 30 min and current density of 33 mA/cm2 experienced the smallest surface roughness value (Ra). The same sample also obtained the highest Vickers microhardness of 122.6 HV and the lowest corrosion rate. This may be due to the homogenous and complete protection coating performed on the mild steel. Practical implications The findings from the study are important for future application of Co–Ni–Fe on the mild steel parts such as fasteners, car body panels, metal chains, wire ropes, engine parts, bicycle rims, nails and screws and various outdoor uses. The improvement of corrosion resistance using optimum electrodeposition parameters is essential for these applications to prolong the life span of the parts. Originality/value A new process which pertains to fabrication of Co–Ni–Fe as a protective coating on mild steel was proposed. The Co–Ni–Fe coating can enhance the corrosion protection and thus prolong the lifespan of the mild steel parts.


2008 ◽  
Vol 59 (4) ◽  
Author(s):  
Daniel Sutiman ◽  
Adrian Cailean ◽  
Igor Cretescu ◽  
Mircea Nechita ◽  
Daniel Mareci

The corrosion behaviour of nickel-based alloys (Heraenium, Verabond and V alloy) in simulated saliva was studied by gravimetric, pH-metric and conductometric methods, as well as by potentiodynamic polarization and by electrochemical impedance spectroscopy (EIS). The main parameters of the corrosion process were established. Additionally, the results obtained with SEM and AAS analyses were reported. All alloys pass directly into a stable passive region, without exhibiting the usual active-passive transition. The EIS results show that a Ni-based alloy exhibits passivity at open circuit potential. The proposed equivalent circuit contains two R-CPE elements in parallel. The physical meaning given to the circuit is the association of the film/electrolyte interface with the passive film itself. The corrosion resistance of the studied non-precious alloys is in the following order: Heraenium alloy ] V alloy ] Verabond alloy.


Author(s):  
Adnan Khalaf i Hammed Al-Badrani ◽  
Hind Ziyad Nafeih

The Belt and Road Initiative is an initiative to revive the ancient Silk Road, through networks of land and sea roads, oil and gas pipelines, electric power lines, the Internet and airports, to create a model of regional and international cooperation.       It is essentially a long-term development strategy, launched by the Chinese president in 2013 to become the main engine of Chinese domestic policy and foreign diplomacy and within the framework of the soft power strategy, to enhance its position and influence in the world as a peaceful and responsible country.   The study includes identifying the initiative and setting goals for China, as well as the challenges and difficulties that hinder the initiative.


Alloy Digest ◽  
1995 ◽  
Vol 44 (1) ◽  

Abstract SANDVIK SANICRO 41 is a nickel-base corrosion resistant alloy with a composition balanced to resist both oxidizing and reducing environments. A high-strength version (110) is available for oil and gas production. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-475. Producer or source: Sandvik.


Alloy Digest ◽  
2011 ◽  
Vol 60 (12) ◽  

Abstract Kubota Alloy HD (UNS J93005) is a heat-resisting stainless steel casting alloy suitable for long-term service at temperatures up to 1095 deg C (2000 deg F). The nearest wrought equivalent is type 327. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on corrosion resistance as well as casting and joining. Filing Code: SS-1110. Producer or source: Kubota Metal Corporation, Fahramet Division.


Alloy Digest ◽  
2010 ◽  
Vol 59 (5) ◽  

Abstract Kubota Alloy HC is a heat resisting stainless steel casting suitable for long term service at temperatures up to 1093 deg C (2000 deg F). This alloy can maintain resistance to sulfur bearing environments up to 1093 deg C (2000 deg F). This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as casting and joining. Filing Code: SS-1065. Producer or source: Kubota Metal Corporation, Fahramet Division.


Sign in / Sign up

Export Citation Format

Share Document