scholarly journals Green Synthesis of Hexagonal Hematite (α-Fe2O3) Flakes Using Pluronic F127-Gelatin Template for Adsorption and Photodegradation of Ibuprofen

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6779
Author(s):  
Maria Ulfa ◽  
Didik Prasetyoko ◽  
Hasliza Bahruji ◽  
Reva Edra Nugraha

Hematite (α-Fe2O3) with uniform hexagonal flake morphology has been successfully synthesized using a combination of gelatin as natural template with F127 via hydrothermal method. The resulting hematite was investigated as adsorbent and photocatalyst for removal of ibuprofen as pharmaceutical waste. Hexagonal flake-like hematite was obtained following calcination at 500 °C with the average size was measured at 1–3 µm. Increasing the calcination temperature to 700 °C transformed the uniform hexagonal structure into cubic shape morphology. Hematite also showed high thermal stability with increasing the calcination temperatures; however, the surface area was reduced from 47 m2/g to 9 m2/g. FTIR analysis further confirmed the formation Fe-O-Fe bonds, and the main constituent elements of Fe and O were observed in EDX analysis for all samples. α-Fe2O3 samples have an average adsorption capacity of 55–25.5 mg/g at 12–22% of removal efficiency when used as adsorbent for ibuprofen. The adsorption capacity was reduced as the calcination temperatures increased due to the reduction of available surface area of the hexagonal flakes after transforming into cubes. Photocatalytic degradation of ibuprofen using hematite flakes achieved 50% removal efficiency; meanwhile, combination of adsorption and photocatalytic degradation further removed 80% of ibuprofen in water/hexane mixtures.

Author(s):  
Maria Ulfa ◽  
Didik Prasetyoko ◽  
Hasliza Bahruji ◽  
Reva Edra Nugraha

Hematite (-Fe2O3) with uniform hexagonal flakes morphology has been successfully synthesized using a combination of gelatin as natural template with F127 via hydrothermal method. The resulting hematite was investigated as adsorbent and photocatalyst for removal of ibuprofen as pharmaceutical waste. Hexagonal flake-like hematite was obtained following calcination at 500 oC with the average size was measured at 1-3 µm. Increasing the calcination temperature to 700 oC transformed the uniform hexagonal structure into cubic shape morphology. Hematite also showed high thermal stability with increasing the calcination temperatures, however, the surface area was reduced from 47 m2/g to 9 m2/g. FTIR analysis further confirmed the formation Fe-O-Fe bonds, and the main constituent elements of Fe and O were observed in EDX analysis for all samples. Fe2O3-G samples have an average adsorption capacity of 55-25.5 mg/g at 12-22% of removal efficiency when used as adsorbent for ibuprofen. The adsorption capacity was reduced with increasing the calcination temperatures due to the reduction of available surface area of the hexagonal flakes when transformed into cube. Photocatalytic degradation of ibuprofen using hematite flakes achieved 50% of removal efficiency meanwhile combination of adsorption and photocatalytic degradation further removed 80% of ibuprofen in water/hexane mixtures.


RSC Advances ◽  
2021 ◽  
Vol 11 (46) ◽  
pp. 28744-28760
Author(s):  
Rumman Zaidi ◽  
Saif Ullah Khan ◽  
I. H. Farooqi ◽  
Ameer Azam

Mesoporous Ce–Al binary oxide nanomaterials prepared with a surface area of 110.32 m2 g−1 showed defluoridation capacity at pH 2.4, exhibited maximum adsorption capacity of 384.6 mg g−1 and a removal efficiency of 91.5% at a small dose of nanoadsorbent.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1059
Author(s):  
Piangjai Peerakiatkhajohn ◽  
Teera Butburee ◽  
Jung-Hoon Sul ◽  
Supphasin Thaweesak ◽  
Jung-Ho Yun

ZnO and Aluminum doped ZnO nanoparticles (Al/ZnO NPs) were successfully synthesized by the sol-gel method. Together with the effect of calcination temperatures (200, 300 and 400 °C) and Al dosage (1%, 3%, 5% and 10%) on structural, morphological and optical properties of Al/ZnO NPs, their photocatalytic degradation of methyl orange (MO) dye was investigated. The calcination temperatures at 200, 300 and 400 °C in forming structure of ZnO NPs led to spherical nanoparticle, nanorod and nanoflake structures with a well-crystalline hexagonal wurtzite, respectively. The ZnO NPs calcined at 200 °C exhibited the highest specific surface area and light absorption property, leading to the MO removal efficiency of 80% after 4 h under the Ultraviolet (UV) light irradiation. The MO removal efficiency was approximately two times higher than the nanoparticles calcined at 400 °C. Furthermore, the 5% Al/ZnO NPs exhibited superior MO removal efficiency of 99% in only 40 min which was approximately 20 times enhancement in photocatalytic activity compared to pristine ZnO under the visible light irradiation. This high degradation performance was attributed to the extended light absorption, narrowed band gap and effective suppression of electron–hole recombination through an addition of Al metal.


2021 ◽  
Vol 13 (6) ◽  
pp. 3050
Author(s):  
Mariana Mariana ◽  
Farid Mulana ◽  
Lisa Juniar ◽  
Dinda Fathira ◽  
Risna Safitri ◽  
...  

This study reports the development of bio-based adsorbent by utilizing coffee endocarp (CE) waste as a raw material for lead (Pb) removal from liquid wastewater. The effect of NaOH and HCl as activation precursors on the characteristics and performance of the resulting adsorbents was investigated. The prepared adsorbents were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence (XRF) and Surface Area Analyzer (SAA). The characterization results confirm the positive role of the activation by either NaOH or HCl in enhancing the surface properties of the resulting adsorbents. The chemical activations removed most of impurities leading to smoother surface, pore size enlargement and enhanced surface area to pore volume ratio, which result in an enhanced adsorption capacity and Pb removal efficiency. The raw adsorbent shows 57.7% of Pb removal efficiency and sorption capacity of 174.4 mg/g. On the other hand, after the chemical treatment using HCl and NaOH, the Pb removal efficiencies increased up to 63.9% and 89.86%, with adsorption capacity of 193 and 271.58 mg/g, respectively. Though both activated sorbents demonstrate better adsorption performance compared to the non-activated CE, overall results reveal that the NaOH-activated sorbent offers better characteristic and performance than the HCl-activated sorbent.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dang Trung Tri Trinh ◽  
Duangdao Channei ◽  
Auppatham Nakaruk ◽  
Wilawan Khanitchaidecha

AbstractThe nanocomposite of BiVO4-based material has been synthesized by one-step solvent method. The morphological, physical, chemical properties of the nanocomposite have been investigated. The results revealed that the surface area of BiVO4, BiVO4/SiO2 and BiVO4/SiO2/GO was 11.13, 28.47 and 43.93 m2/g, respectively. The structural test by XRD proved that the nanocomposites were monoclinic phase of bismuth vanadate. Adsorption and photocatalytic degradation were two main mechanisms that strongly related to pollutant removal efficiency (i.e., methylene blue and phenol). The BiVO4/SiO2/GO nanocomposite obtained the greatest MB removal efficiency due to its high adsorption ability from high surface area, whereas the photocatalytic degradation was insignificant mechanism. In contrast, the relatively low adsorption ability of BiVO4/SiO2/GO nanocomposite was observed when the pollutant was phenol due to negative charge and high stability of phenoxide ions, then the photocatalytic degradation became the main mechanism for phenol removal. The phenol removal efficiency reached approximately 70% in 6 h with H2O2 assistance. The combination of SiO2 and GO improved the surface property of BiVO4-based photocatalyst, however the excessive combination ratio generated the excellent adsorbent material rather than the photocatalyst. Hence, the optimal combination ratio is essential to archive the greatest nanocomposite for photocatalytic application.


2016 ◽  
Vol 1133 ◽  
pp. 547-551 ◽  
Author(s):  
Ali E.I. Elkhalifah ◽  
Mohammad Azmi Bustam ◽  
Azmi Mohd Shariff ◽  
Sami Ullah ◽  
Nadia Riaz ◽  
...  

The present work aims at a better understanding of the influences of the intercalated mono-, di- and triethanolamines on the characteristics and CO2 adsorption ability of sodium form of bentonite (Na-bentonite). The results revealed that the molar mass of intercalated amines significantly influenced the structural and surface properties as well as the CO2 adsorption capacity of Na-bentonite. In this respect, a stepwise increase in the d-spacing of Na-bentonite with the molar mass of amine was recorded by XRD technique. However, an inverse effect of the molar mass of amine on the surface area was confirmed by BET method. CO2 adsorption experiments on amine-bentonite hybrid adsorbents showed that the CO2 adsorption capacity inversly related to the molar mass of amine at 25 ͦC and 101 kPa. Accordingly, Na-bentonite modified by monoethanolammonium cations adsorbed as high as 0.475 mmol CO2/g compared to 0.148 and 0.087 mmol CO2/g for that one treated with di- and triethanolammonium cations, respectively.


2011 ◽  
Vol 340 ◽  
pp. 236-240
Author(s):  
Jian Feng Ma ◽  
Jian Ming Yu ◽  
Bing Ying Cui ◽  
Ding Long Li ◽  
Juan Dai

Inorganic-organic-bentonite was synthesized by modification of bentonite by Hydroxy-iron and surfactant, which could be applied in dye removal by adsorption and catalysis. The removal of acid dye Orange II was studied at various factors such as time and pH of solution. The results showed that the inorganic-organic-bentonite could efficiently remove the dye with efficiency of 96.22%. The maximum adsorption capacity is 76 mg/g. The pH of solution has significant effect on both adsorption and catalysis. When pH was 4, the maximum removal efficiency of adsorption and catalysis were 97.57% and 87.23%, respectively. After degradation, the secondary pollution was diminished and the bentonite could be reused.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1540
Author(s):  
Muhammad Ahmad ◽  
Tehseen Nawaz ◽  
Mohammad Mujahid Alam ◽  
Yasir Abbas ◽  
Shafqat Ali ◽  
...  

The development of excellent drug adsorbents and clarifying the interaction mechanisms between adsorbents and adsorbates are greatly desired for a clean environment. Herein, we report that a reduced graphene oxide modified sheeted polyphosphazene (rGO/poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol)) defined as PZS on rGO was used to remove the tetracycline (TC) drug from an aqueous solution. Compared to PZS microspheres, the adsorption capacity of sheeted PZS@rGO exhibited a high adsorption capacity of 496 mg/g. The adsorption equilibrium data well obeyed the Langmuir isotherm model, and the kinetics isotherm was fitted to the pseudo-second-order model. Thermodynamic analysis showed that the adsorption of TC was an exothermic, spontaneous process. Furthermore, we highlighted the importance of the surface modification of PZS by the introduction of rGO, which tremendously increased the surface area necessary for high adsorption. Along with high surface area, electrostatic attractions, H-bonding, π-π stacking and Lewis acid-base interactions were involved in the high adsorption capacity of PZS@rGO. Furthermore, we also proposed the mechanism of TC adsorption via PZS@rGO.


2021 ◽  
Vol 13 (8) ◽  
pp. 4184
Author(s):  
Zhiying Xu ◽  
Caterina Valeo ◽  
Angus Chu ◽  
Yao Zhao

This research investigates the use of a common food waste product for removing four different types of metals typically found in stormwater. Whole, unprocessed oyster shells are explored for use in stormwater management infrastructure that addresses water quality concerns. The role of the shells’ surface area, exposure time, and the solution’s initial concentration on the removal efficiency were examined. Beaker scale experimental results demonstrated very good efficiency by the oyster shells for removing copper ions (80–95%), cadmium ions (50–90%), and zinc ions (30–80%) but the shells were not as effective in removing hexavalent chromium (20–60%). There was a positive relationship between initial concentration and removal efficiency for copper and zinc ions, a negative relationship for hexavalent chromium, and no relationship was found for cadmium ions. There was also a positive relationship between surface area and removal efficiency, and exposure time and removal efficiency. However, after a certain exposure time, the increase in removal efficiency was negligible and desorption was occasionally observed. A mid-scale experiment to mimic real-world conditions was conducted in which continuous inflow based on a 6-h design storm was applied to 2.7 kg of whole, unprocessed oyster shells. The shells provided an 86% and an 84% removal efficiency of cadmium and copper ions, respectively, in one day of hydraulic retention time. No removal was observed for hexavalent chromium, and zinc ion removal was only observed after initial leaching. This work has significant implications for sustainable stormwater infrastructure design using a material commonly found in municipal food waste.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1068
Author(s):  
Xinyue Zhang ◽  
Yani Guo ◽  
Wenjun Li ◽  
Jinyuan Zhang ◽  
Hailiang Wu ◽  
...  

The treatment of wastewater containing heavy metals and the utilization of wool waste are very important for the sustainable development of textile mills. In this study, the wool keratin modified magnetite (Fe3O4) powders were fabricated by using wool waste via a co-precipitation technique for removal of Cu2+ ions from aqueous solutions. The morphology, chemical compositions, crystal structure, microstructure, magnetism properties, organic content, and specific surface area of as-fabricated powders were systematically characterized by various techniques including field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), thermogravimetric (TG) analysis, and Brunauer–Emmett–Teller (BET) surface area analyzer. The effects of experimental parameters such as the volume of wool keratin hydrolysate, the dosage of powder, the initial Cu2+ ion concentration, and the pH value of solution on the adsorption capacity of Cu2+ ions by the powders were examined. The experimental results indicated that the Cu2+ ion adsorption performance of the wool keratin modified Fe3O4 powders exhibited much better than that of the chitosan modified ones with a maximum Cu2+ adsorption capacity of 27.4 mg/g under favorable conditions (0.05 g powders; 50 mL of 40 mg/L CuSO4; pH 5; temperature 293 K). The high adsorption capacity towards Cu2+ ions on the wool keratin modified Fe3O4 powders was primarily because of the strong surface complexation of –COOH and –NH2 functional groups of wool keratins with Cu2+ ions. The Cu2+ ion adsorption process on the wool keratin modified Fe3O4 powders followed the Temkin adsorption isotherm model and the intraparticle diffusion and pseudo-second-order adsorption kinetic models. After Cu2+ ion removal, the wool keratin modified Fe3O4 powders were easily separated using a magnet from aqueous solution and efficiently regenerated using 0.5 M ethylene diamine tetraacetic acid (EDTA)-H2SO4 eluting. The wool keratin modified Fe3O4 powders possessed good regenerative performance after five cycles. This study provided a feasible way to utilize waste wool textiles for preparing magnetic biomass-based adsorbents for the removal of heavy metal ions from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document