Development and Characterization of Amine-Clay Hybrid Adsorbents for CO2 Capture

2016 ◽  
Vol 1133 ◽  
pp. 547-551 ◽  
Author(s):  
Ali E.I. Elkhalifah ◽  
Mohammad Azmi Bustam ◽  
Azmi Mohd Shariff ◽  
Sami Ullah ◽  
Nadia Riaz ◽  
...  

The present work aims at a better understanding of the influences of the intercalated mono-, di- and triethanolamines on the characteristics and CO2 adsorption ability of sodium form of bentonite (Na-bentonite). The results revealed that the molar mass of intercalated amines significantly influenced the structural and surface properties as well as the CO2 adsorption capacity of Na-bentonite. In this respect, a stepwise increase in the d-spacing of Na-bentonite with the molar mass of amine was recorded by XRD technique. However, an inverse effect of the molar mass of amine on the surface area was confirmed by BET method. CO2 adsorption experiments on amine-bentonite hybrid adsorbents showed that the CO2 adsorption capacity inversly related to the molar mass of amine at 25 ͦC and 101 kPa. Accordingly, Na-bentonite modified by monoethanolammonium cations adsorbed as high as 0.475 mmol CO2/g compared to 0.148 and 0.087 mmol CO2/g for that one treated with di- and triethanolammonium cations, respectively.

2014 ◽  
Vol 625 ◽  
pp. 98-101 ◽  
Author(s):  
Ali E.I. Elkhalifah ◽  
Mohammad Azmi Bustam ◽  
Azmi Mohd Shariff ◽  
Sami Ullah ◽  
Biruh Shimekit ◽  
...  

The present study investigates the effects of intercalation process of protonated primary, secondary and tertiary amines on structural and surface characteristics of sodium form of bentonite clay. For this purpose, sodium form of bentonite clay was prepared and then exchanged with mono-, di-and triethanolammonium cations via intercalation mechanism into the interlayer space of the clay. The prepared samples were characterized by XRD and BET techniques. An increase in the d-spacing of bentonite clay with the molar mass of amines was observed in their x-ray diffractograms, following the order of: triethanolamine > diethanolamine > monoethanolamine. The BET results showed a gradual decrease in the BET surface area with the increase in the molar mass of amines used. Based on the results obtained, it can be concluded that the molar mass of amines has significant effects on structural and surface properties of bentonite clay.


2015 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Hartini Hartini ◽  
Yuniawan Hidayat ◽  
Mudjijono Mudjijono

<p>A composite of γ-alumina and activated carbon made of cassava peels was studied in terms of its pore structures and its properties. The objective of this study was to determine the interaction and structure, as well as the character and pore size of γ-alumina – activated carbon composite.</p><p>Carbon made of cassava peels was activated by H<sub>2</sub>SO<sub>4</sub> and its activities were tested according to the Indonesian Industrial Standards (SII). The addition of activated carbon into γ-alumina made in variations of 10, 20, 30, 40 and 50 % w/w, of the total weight of 10 grams. The composite of γ-alumina - activated carbon was characterized by FTIR, SAA (Surface Area Analyzer), XRD, and determination of Hysteresis Loop composites.</p>The greater addition of activated carbon to γ-alumina causes intermolecular interactions between –O-H groups form rehydrated hydrogen bonds in the composite is greater. The structure of γ-alumina in the composites remain intact although the percentage of activated carbon in composite is large. The total pore volume and surface area using the BET method of the composite decreases with increasing activated carbon percentage. The greater addition of activated carbon to γ-alumina causes size of mesoporous composites decreased with the characteristic of a composite formed is closer to the activated carbon.


2019 ◽  
Vol 948 ◽  
pp. 49-53
Author(s):  
Andri Saputra ◽  
Hary Sulistyo ◽  
Deni Swantomo

Introducing or impregnating Mg(OH)2onto activated carbon is a promising path for wastewater treatment of uptake (removal) uranium from aqueous solution. The present study aims to synthesize and characterize Mg(OH)­2-impregnated activated carbon from coconut shell. The introducing or impregnating Mg(OH)2into treated biochar by activation method using various impregnation ratio (IR) of MgCl2(IR = 0.5; 1.0; 2.0). Characterization of functional groups in produced activated carbon was conducted with the aid of FTIR spectroscopy. The presence of O-H or Mg(hydroxyl) bond was confirmed by FTIR analysis at 3343.50 cm-1with the highest intensity of the obtained peak at impregnation ratio (IR) 2.0. Due to the surface area is one of the important factors that control a material’s ability to adsorb contaminations, the surface area of activated carbon was measured about 353-358 m2/g by BET method. To indicate that introducing or impregnating Mg(OH)2or Mg(hydroxyl) into treated carbon is successfully work, the presence of Mg (%w) in activated carbon was performed using X-Ray Fluorescence Analysis with the highest Mg presence about 28.587 (%w) at impregnation ratio (IR) 2.0.


2018 ◽  
Vol 14 (2) ◽  
pp. 333
Author(s):  
Candra Purnawan ◽  
Tri Martini ◽  
Ima Puspita Rini

<p>Telah dilakukan penelitian tentang sintesis dan karakterisasi silika dari abu ampas tebu termodifikasi arginin dengan senyawa penggandeng glisidoksipropiltrimetoksisilan (GPTMS) sebagai adsorben ion logam Cu(II). Penelitian ini bertujuan untuk mengetahui karakterisasi silika abu ampas tebu termodifikasi arginin dengan senyawa penggandeng GPTMS sebagai adsorben ion logam Cu(II). Sintesis silika termodifikasi arginin dengan senyawa penggandeng GPTMS dilakukan dengan metode sol-gel. Adsorben tersebut dikarakterisasi dengan XRD, FTIR dan SAA. Uji kemampuan adsorpsi dilakukan menggunakan metode batch dengan larutan ion logam Cu(II), variasi pH, waktu kontak dan konsentrasi. Hasil penelitian menunjukkan perubahan difraktogram XRD pada silika termodifikasi dan silika abu ampas tebu (silika AAT). Difraktogram menunjukkan puncak melebar pada 2θ sebesar 10-15° dan 20-25°. Analisis FTIR menunjukkan Serapan baru –CH, ̶ NH tekuk, ̶ CN berturut-turut pada daerah 2947, 1570, dan 1356 cm<sup>-1</sup>. Analisis SAA menunjukkan peningkatan luas permukaan pada silika termodifikasi arginin daripada silika dari 64,31 m<sup>2</sup>/g menjadi 382,67 m<sup>2</sup>/g. Kondisi terbaik adsorpsi ion logam Cu(II) dengan adsorben silika termodifikasi arginin terjadi pada pH 6 dengan waktu kontak 45 menit. Silika termodifikasi arginin mengalami peningkatan kapasitas adsorpsi dibandingkan silika dengan kapasitas adsorpsi yaitu dari 0,12 mg/g menjadi 0,52 mg/g. Isoterm adsorpsi ion logam Cu(II) lebih dominan mengikuti isoterm Langmuir dengan r = 0,997.</p><p><strong>Synthesis </strong><strong>a</strong><strong>nd Characterization </strong><strong>o</strong><strong>f Arginine-Modified Silica </strong><strong>f</strong><strong>rom Baggase Ash </strong><strong>a</strong><strong>s C</strong><strong>u</strong><strong>(I</strong><strong>I</strong><strong>) Ions Adsorbent</strong><strong>.</strong> The synthesis and characterization of arginine modified silica from bagasse ash with crosslinker glycydoxypropyltrimethoxyxylane (GPTMS) as an adsorbent for Cu (II) ions has been studied. This research aimed to determine the characterization of arginine modified silica with crosslinker GPTMS as an adsorbent for Cu(II) ions. Synthesis arginine modified silica with crosslinker GPTMS was conducted using sol-gel method. The adsorbent was characterized by XRD, FTIR and SAA. Adsorption ability test conducted using the batch method with a solution of Cu(II) ions, variation of pH, contact time and concentration. The results showed the change in the XRD diffractogram of arginine modified silica from bagasse (silica ATT). XRD diffractogram releaved broad peaks at 2θ 10-15° and 20-25°. FTIR analysis showed a new absorption -CH, -NH bending, -C-N on area of 2947, 1570, and 1356 cm<sup>-1</sup>, respectively SAA analysis showed that the arginine-modified silica with crosslinker GPTMS has higher surface area than silica from 64.31 m<sup>2</sup>/g to 382.67 m<sup>2</sup>/g. The best conditions for copper adsorption with adsorbent arginine modified silica occured at pH 6 with a contact time of 45 minutes. Arginine modified silica has higher adsorption capacity than silica with a adsorption capacity from 0.12 mg/g to 0.52 mg/g. Adsorption of Cu (II) metal ions more dominantly follows Langmuir isotherms with r = 0.997.<strong></strong></p><p> </p>


Author(s):  
Huibin Yu ◽  
Hongqin Ke ◽  
Tu Chen ◽  
Xing Li ◽  
Shenglong Tan ◽  
...  

Immobilized metal ion affinity adsorbents have been widely used in separation technique to purify proteins. Due to the leakage of metal ion from the adsorbents, there is no metal ion affinity adsorbent for hemoperfusion has been applied to clinical trial. In this study, in order to prevent the leakage of Zn2+ loaded from cellulose beads based adsorbent, improve its stability and adsorption capacity for testosterone, Freeze-drying method was used to enhance the porosity of cellulose beads, improve the surface area of the cellulose beads and adsorption capacity for testosterone. Chitosan was used to coat the adsorbents for preventing the leakage of Zn2+ loaded and improve the adsorbent&rsquo;s stability. Moreover, the factors affecting adsorption ability and some components in plasma were also investigated. The results indicate the adsorption ability of the adsorbent can be significantly improved by freeze-drying. After the adsorbent was coated with 0.02% chitosan solution, the highest adsorption percentage reached 48%. During adsorption, the Zn2+ concentration in plasma did not rise. In addition, the adsorption percentage for total proteins was below 15%. The results may be caused by the pore size and surface area of the adsorbent enlarged via freeze-drying, and the chitosan solution went into the pores and coated the outer and inner surface of the adsorbent. The adsorbent has a potential clinical application to remove testosterone in patients with recurrent and metastatic prostate cancer.


2016 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Hartini Hartini ◽  
Yuniawan Hidayat ◽  
Mudjijono Mudjijono

<p>A composite of γ-alumina and activated carbon made of cassava peels was studied in terms of its pore structures and its properties. The objective of this study was to determine the interaction and structure, as well as the character and pore size of γ-alumina – activated carbon composite.</p><p>Carbon made of cassava peels was activated by H<sub>2</sub>SO<sub>4</sub> and its activities were tested according to the Indonesian Industrial Standards (SII). The addition of activated carbon into γ-alumina made in variations of 10, 20, 30, 40 and 50 % w/w, of the total weight of 10 grams. The composite of γ-alumina - activated carbon was characterized by FTIR, SAA (Surface Area Analyzer), XRD, and determination of Hysteresis Loop composites.</p>The greater addition of activated carbon to γ-alumina causes intermolecular interactions between –O-H groups form rehydrated hydrogen bonds in the composite is greater. The structure of γ-alumina in the composites remain intact although the percentage of activated carbon in composite is large. The total pore volume and surface area using the BET method of the composite decreases with increasing activated carbon percentage. The greater addition of activated carbon to γ-alumina causes size of mesoporous composites decreased with the characteristic of a composite formed is closer to the activated carbon.


1996 ◽  
Vol 454 ◽  
Author(s):  
Marc J. Ledoux ◽  
Cuong Pham-Huu ◽  
Christophe Bouchy ◽  
Pascal Del Gallo ◽  
Claude Estournes ◽  
...  

ABSTRACTHigh surface area (> 100 m2 · g−1) SiC doped with zirconium was prepared by the gas-solid reaction. The material was made up of three phases: β-SiC, covered by ZrO2 and an amorphous phase composed of Si, Zr and O. The characterization of the sample was performed by means of powder X-ray diffraction (XRD), surface area and porosity measurements by the BET method, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Preliminary catalytic tests, the standard n-C7 isomerization on supported MoOxCy showed that this new support was at least as effective as pure SiC.


2015 ◽  
Vol 9 (7) ◽  
pp. 107 ◽  
Author(s):  
Yuono Yuono ◽  
David Bahrin ◽  
Herri Susanto

Adsorbent CuO/r-Al2O3 was successfully prepared by the dry impregnation using Cu(NO3)2.3H2O solution oncommercial r-Al2O3. Impregnation and calcination process was be done repeatedly to get a desired CuO contenton the support. The impregnations were done at 50oC for 8 hours or 120°C for 5 hours. Calcinations were carriedout at a temperature of 400oC for 8 hours. Adsorbent obtained from this preparation contained Cu: 7.93% (named8Cu), 14.76% (15Cu) and 28.98% (30Cu). Pore characteristic indicated that the surface area decreased with theincrease in Cu content in the adsorbent (from 207 in original support to 124 m2/g in 8Cu). Similar tendency wasfound for the pore volume (from 0.47 to 0.28 mL/g).In batch adsorption test, the amount of adsorbed SO2 was calculated from the increase in mass of adsorbent.Adsorbent 8Cu had the best adsorption capacity in term of mol ratio, ie. 0.78 SO2/CuO (close to stoichiometry).Original support of r-Al2O3 was found to be inert to SO2. In semi-continue test, the adsorption was carried undera flow of gas containing 2.5% SO2. The amount of adsorbed SO2 was calculated from the different of SO2content between influent to effluent. It was found again that the best adsorbent was 8Cu with the adsorptioncapacity of 0.97 mol/mol CuO.


2010 ◽  
Vol 46 (1) ◽  
pp. 33-40 ◽  
Author(s):  
A. Strkalj ◽  
A. Radjenovic ◽  
J. Malina

Carbon anode dust (CAD) is metallurgical waste material of aluminium production industry. The objective of this study was to convert carbon anode dust to acetic acid-modified and KOH-modified carbon adsorbat. Modified and unmodified carbon anode dust samples were characterized by SEM analysis. Pore volume, pore size and surface area were determined with BET method. The prepared carbons were evaluated for their adsorption capacity of nickel ions. The experimental data were analyzed by Freundlich and Langmuir isotherms. Changes in the surface morphology, surface area properties and obtained adsorption capacity indicate that acetic acid is a better modifier than KOH. Equilibrium results showed that acetic acid modification increased the CAD adsorption capacity for Ni (II) more than KOH modification.


RSC Advances ◽  
2016 ◽  
Vol 6 (49) ◽  
pp. 43388-43400 ◽  
Author(s):  
Syed Shahabuddin ◽  
Norazilawati Muhamad Sarih ◽  
Sharifah Mohamad ◽  
Siti Nor Atika Baharin

Co3O4 nanocube polyaniline nanocomposites have been successfully synthesised. They show enhanced surface properties and a greater adsorption capacity to remove MO efficiently within a short duration of time.


Sign in / Sign up

Export Citation Format

Share Document