scholarly journals Surface Modification of Additively Manufactured Nitinol by Wet Chemical Etching

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7683
Author(s):  
Denis Nazarov ◽  
Aida Rudakova ◽  
Evgenii Borisov ◽  
Anatoliy Popovich

Three-dimensional printed nitinol (NiTi) alloys have broad prospects for application in medicine due to their unique mechanical properties (shape memory effect and superplasticity) and the possibilities of additive technologies. However, in addition to mechanical properties, specific physicochemical characteristics of the surface are necessary for successful medical applications. In this work, a comparative study of additively manufactured (AM) NiTi samples etched in H2SO4/H2O2, HCl/H2SO4, and NH4OH/H2O2 mixtures was performed. The morphology, topography, wettability, free surface energy, and chemical composition of the surface were studied in detail. It was found that etching in H2SO4/H2O2 practically does not change the surface morphology, while HCl/H2SO4 treatment leads to the formation of a developed morphology and topography. In addition, exposure of nitinol to H2SO4/H2O2 and HCl/H2SO4 contaminated its surface with sulfur and made the surface wettability unstable in air. Etching in NH4OH/H2O2 results in surface cracking and formation of flat plates (10–20 microns) due to the dissolution of titanium, but clearly increases the hydrophilicity of the surface (values of water contact angles are 32–58°). The etch duration (30 min or 120 min) significantly affects the morphology, topography, wettability and free surface energy for the HCl/H2SO4 and NH4OH/H2O2 etched samples, but has almost no effect on surface composition.

Author(s):  
O.V. Maikovych ◽  
N.G. Nosova ◽  
M.V. Yakoviv ◽  
І.А. Dron ◽  
A.V. Stasiuk ◽  
...  

The conditions for preparation of a composite hydrogel based on polyacrylamide and gelatin, which is reinforced with polypropylene microfiber, were determined to increase its strength. The conditions of modification of polypropylene microfiber were established under which its surface is hydrophilized, which was confirmed by a significant increase in the water retention of microfiber by 11.0–15.2 times. Under the same conditions, an increase in the values of the hydrogen component of free surface energy on planar samples of polypropylene was observed (from 2.81.0 mN m–1 to 29.81.0 mN m–1). Optimal conditions (minimum limits of component concentrations, temperature range, and pH of a medium) were determined, under which a hydrogel based on polyacrylamide and gelatin with satisfactory physicochemical and mechanical properties can be formed. A composite hydrogel, based on polyacrylamide and gelatin reinforced with modified polypropylene microfiber, was prepared. It was found that the introduction of modified microfiber increases the limits of the beginning of destruction from 20–30 to 130 kPa. The results of the investigation of the drug release from the hydrogel indicated that the obtained composites can be used as matrices to create a hydrogel therapeutic bandages with the function of prolonged drug delivery.


Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 106 ◽  
Author(s):  
Yehia M. Manawi ◽  
Kui Wang ◽  
Viktor Kochkodan ◽  
Daniel J. Johnson ◽  
Muataz A. Atieh ◽  
...  

In this work, novel polysulphone (PS) porous membranes for water desalination, incorporated with commercial and produced carbon nanotubes (CNT), were fabricated and analyzed. It was demonstrated that changing the main characteristics of CNT (e.g., loading in the dope solutions, aspect ratio, and functionality) significantly affected the membrane properties and performance including porosity, water flux, and mechanical and surface properties. The water flux of the fabricated membranes increased considerably (up to 20 times) along with the increase in CNT loading. Conversely, yield stress and Young’s modulus of the membranes dropped with the increase in the CNT loading mainly due to porosity increase. It was shown that the elongation at fracture for PS/0.25 wt. % CNT membrane was much higher than for pristine PS membrane due to enhanced compatibility of commercial CNTs with PS matrix. More pronounced effect on membrane’s mechanical properties was observed due to compatibility of CNTs with PS matrix when compared to other factors (i.e., changes in the CNT aspect ratio). The water contact angle for PS membranes incorporated with commercial CNT sharply decreased from 73° to 53° (membrane hydrophilization) for membranes with 0.1 and 1.0 wt. % of CNTs, while for the same loading of produced CNTs the water contact angles for the membrane samples increased from 66° to 72°. The obtained results show that complex interplay of various factors such as: loading of CNT in the dope solutions, aspect ratio, and functionality of CNT. These features can be used to engineer membranes with desired properties and performance.


2018 ◽  
Vol 89 (9) ◽  
pp. 1807-1822
Author(s):  
Yunjie Yin ◽  
Yanyan Zhang ◽  
Xiaoqian Ji ◽  
Tao Zhao ◽  
Chaoxia Wang

A novel strategy was reported on the design and fabrication of functional photosensitive hybrid sols (FPHSs) by non-alcoholic emulsification in the presence of a TiO2 nanoparticle and photoinitiator via a sol-gel process using tetraethylorthosilicate, γ-methacryloxypropyltrimethoxysilane (MPS) and hydrophobic silane coupling agents as precursors. Smart cellulose substrates with alterable superhydrophobic–superhydrophilic conversion were fabricated using FPHS via the ultraviolet (UV) curing process. The liquid FPHS was photocured into solid gel during UV irradiation for 40 s with MPSs in FPHS, which was verified via Fourier transform infrared spectra. The cellulose substrates were modified with FPHSs, and the water contact angles of the modified cellulose substrates were more than 150°. The superhydrophobicity was improved by the gathering of hydrophobic chains and particle deposition of hybrid gel on the fiber surface. Nevertheless, the water contact angles of the modified cellulose substrates were receded with UV irradiation from 158° to 0° in 200 min, due to TiO2 photoinduction. The irradiated cellulose substrates were placed in the dark, and the water contact angles were recovered to about 130°, gradually. What is more, the reversible process can be repeated more than eight times. The modified cellulose substrate presented excellent washing fastness, even suffering 10 times washing processing. The mechanical properties, including breaking strength and elongation rate, were improved after the coating and UV curing process, which considerably remedied the defects of the heating curing process on the mechanical properties.


MRS Advances ◽  
2018 ◽  
Vol 3 (57-58) ◽  
pp. 3379-3390 ◽  
Author(s):  
Saaketh R. Narayan ◽  
Jack M. Day ◽  
Harshini L. Thinakaran ◽  
Nicole Herbots ◽  
Michelle E. Bertram ◽  
...  

ABSTRACTThe effects of crystal orientation and doping on the surface energy, γT, of native oxides of Si(100) and Si(111) are measured via Three Liquid Contact Angle Analysis (3LCAA) to extract γT, while Ion Beam Analysis (IBA) is used to detect Oxygen. During 3LCAA, contact angles for three liquids are measured with photographs via the “Drop and Reflection Operative Program (DROP™). DROP™ removes subjectivity in image analysis, and yields reproducible contact angles within < ±1°. Unlike to the Sessile Drop Method, DROP can yield relative errors < 3% on sets of 20-30 drops. Native oxides on 5 x 1013 B/cm3 p- doped Si(100) wafers, as received in sealed, 25 wafer teflon boats continuously stored in Class 100/ISO 5 conditions at 24.5°C in 25% controlled humidity, are found to be hydrophilic. Their γT, 52.5 ± 1.5 mJ/m2, is reproducible between four boats from three sources, and 9% greater than γT of native oxides on n- doped Si(111), which averages 48.1 ± 1.6 mJ/m2 on four 4” Si(111) wafers. IBA combining 16O nuclear resonance with channeling detects 30% more oxygen on native oxides of Si(111) than Si(100). While γT should increase on thinner, more defective oxides, Lifshitz-Van der Waals interactions γLW on native oxides of Si(100) remain at 36 ± 0.4 mJ/m2, equal to γLW on Si(111), 36 ± 0.6 mJ/m2, since γLW arises from the same SiO2 molecules. Native oxides on 4.5 x 1018 B/cm3 p+ doped Si(100) yield a γT of 39 ± 1 mJ/m2, as they are thicker per IBA. In summary, 3LCAA and IBA can detect reproducibly and accurately, within a few %, changes in the surface energy of native oxides due to thickness and surface composition arising from doping or crystal structure, if conducted in well controlled clean room conditions for measurements and storage.


1948 ◽  
Vol 158 (1) ◽  
pp. 297-316
Author(s):  
W. T. Bottomley

Van Iterson's experiments show that cavitation erosion is produced by the collapse of minute air bubbles in water in a state of air supersaturation. This is contrary to the usual conception that cavitation erosion is due to the collapse of vapour bubbles. The author gives results of experiments which indicate that the bubbles which form and collapse at the stage of incipient cavitation in aerated water are air bubbles in a supersaturated state. The experiments also show that vapour bubbles which collapse in de-aerated water are in thermal equilibrium. It is shown that the collapse of bubbles in thermal equilibrium cannot cause erosion because the vapour pressure inside and the hydrostatic pressure surrounding the bubbles are balanced during collapse. The energy producing cavitation erosion is the free surface energy liberated by the collapse of the air bubbles. The final collapse velocity is the velocity of sound in water and the magnitude of the blow produced is of the order of 120 tons per sq. in. or more. The effect of these views on the interpretation of the model tests in cavitation tunnels and on the cavitation number is discussed.


2009 ◽  
Vol 50 (6) ◽  
pp. 1171-1176
Author(s):  
N. Yu. Sdobnyakov ◽  
A. N. Bazulev ◽  
V. M. Samsonov ◽  
D. A. Kul’pin ◽  
D. N. Sokolov

2017 ◽  
Vol 25 (4) ◽  
pp. 257-266 ◽  
Author(s):  
Sami-Seppo Ovaska ◽  
Pavel Geydt ◽  
Ringaudas Rinkunas ◽  
Tadeusz Lozovski ◽  
Robertas Maldzius ◽  
...  

Dispersion coating layers consisting of hydroxypropylated starch, 0–30 pph of barrier-grade talc and 0–10 pph of styrene-butadiene latex were subjected to both positive and negative direct-current corona treatments utilizing a specially developed dynamic treatment unit. The effects of the surface composition (barrier coating) on the response to the direct current corona treatment were evaluated by measuring contact angles and determining the surface energy. The effects of corona treatment on the properties of the barrier coating were further determined by measuring the contact angle of rapeseed oil and the grease resistance. It was found that the grease resistance of the corona-treated barrier coatings was substantially lower than that of untreated samples, which was ascribed to holes caused by corona discharge strike-through and to chemical changes on the treated surfaces. The corona treatment lowered the surface energy of the coatings, as indicated by an increase in the contact angles of water and rapeseed oil. Changes in the dispersion part of the surface energy were recorded, particularly after positive treatment voltage, whereas a negative discharge led to greater changes in the polar part of the surface energy. X-ray photoelectron spectroscopy (XPS) tests revealed an increase in the proportion of talc at the surface after corona treatment, which indicates a migration caused by the applied electric field. The peak force tapping mode of an atomic force microscope revealed moderate topographical changes in the coatings and a decrease in surface elasticity, supporting the migration of talc particles. In addition, significant changes in the physicochemical properties of the untreated reverse side were observed.


Sign in / Sign up

Export Citation Format

Share Document