scholarly journals Effect of Diamond Polishing and Thermal Treatment on Carbon Paramagnetic Centers’ Nature and Structure

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7719
Author(s):  
Ira Litvak ◽  
Avner Cahana ◽  
Yaakov Anker ◽  
Sharon Ruthstein ◽  
Haim Cohen

Diamonds contain carbon paramagnetic centers (stable carbon radicals) in small concentrations (at the level of ~1 × 1012 spins/mg) that can help in elucidating the structure of the nitrogen atoms’ contaminants in the diamond crystal. All diamonds that undergo polishing are exposed to high temperatures, owing to the friction force during the polishing process, which may affect the carbon-centered radicals’ concentration and structure. The temperature is increased appreciably; consequently, the black body radiation in the visible range turns orange. During polishing, diamonds emit an orange light (at a wavelength of about 600 nm) that is typical of a black body temperature of 900 °C or higher. Other processes in which color-enhanced diamonds are exposed to high temperatures are thermal treatments or the high-pressure, high-temperature (HPHT) process in which the brown color (resulting from plastic deformation) is bleached. The aim of the study was to examine how thermal treatment and polishing influence the paramagnetic centers in the diamond. For this purpose, four rough diamonds were studied: two underwent a polishing process, and the other two were thermally treated at 650 °C and 1000 °C. The diamonds were analyzed pre- and post-treatment by EPR (Electron Paramagnetic resonance), FTIR (Fourier transform infrared, fluorescence, and their visual appearance. The results indicate that the polishing process results in much more than just thermal heating the paramagnetic centers.

Author(s):  
Nicholas Manton ◽  
Nicholas Mee

The book is an inspirational survey of fundamental physics, emphasizing the use of variational principles. Chapter 1 presents introductory ideas, including the principle of least action, vectors and partial differentiation. Chapter 2 covers Newtonian dynamics and the motion of mutually gravitating bodies. Chapter 3 is about electromagnetic fields as described by Maxwell’s equations. Chapter 4 is about special relativity, which unifies space and time into 4-dimensional spacetime. Chapter 5 introduces the mathematics of curved space, leading to Chapter 6 covering general relativity and its remarkable consequences, such as the existence of black holes. Chapters 7 and 8 present quantum mechanics, essential for understanding atomic-scale phenomena. Chapter 9 uses quantum mechanics to explain the fundamental principles of chemistry and solid state physics. Chapter 10 is about thermodynamics, which is built around the concepts of temperature and entropy. Various applications are discussed, including the analysis of black body radiation that led to the quantum revolution. Chapter 11 surveys the atomic nucleus, its properties and applications. Chapter 12 explores particle physics, the Standard Model and the Higgs mechanism, with a short introduction to quantum field theory. Chapter 13 is about the structure and evolution of stars and brings together material from many of the earlier chapters. Chapter 14 on cosmology describes the structure and evolution of the universe as a whole. Finally, Chapter 15 discusses remaining problems at the frontiers of physics, such as the interpretation of quantum mechanics, and the ultimate nature of particles. Some speculative ideas are explored, such as supersymmetry, solitons and string theory.


Author(s):  
Anthony Duncan ◽  
Michel Janssen

This is the first of two volumes on the genesis of quantum mechanics. It covers the key developments in the period 1900–1923 that provided the scaffold on which the arch of modern quantum mechanics was built in the period 1923–1927 (covered in the second volume). After tracing the early contributions by Planck, Einstein, and Bohr to the theories of black‐body radiation, specific heats, and spectroscopy, all showing the need for drastic changes to the physics of their day, the book tackles the efforts by Sommerfeld and others to provide a new theory, now known as the old quantum theory. After some striking initial successes (explaining the fine structure of hydrogen, X‐ray spectra, and the Stark effect), the old quantum theory ran into serious difficulties (failing to provide consistent models for helium and the Zeeman effect) and eventually gave way to matrix and wave mechanics. Constructing Quantum Mechanics is based on the best and latest scholarship in the field, to which the authors have made significant contributions themselves. It breaks new ground, especially in its treatment of the work of Sommerfeld and his associates, but also offers new perspectives on classic papers by Planck, Einstein, and Bohr. Throughout the book, the authors provide detailed reconstructions (at the level of an upper‐level undergraduate physics course) of the cental arguments and derivations of the physicists involved. All in all, Constructing Quantum Mechanics promises to take the place of older books as the standard source on the genesis of quantum mechanics.


Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Iwona Sadura ◽  
Dariusz Latowski ◽  
Jana Oklestkova ◽  
Damian Gruszka ◽  
Marek Chyc ◽  
...  

Plants have developed various acclimation strategies in order to counteract the negative effects of abiotic stresses (including temperature stress), and biological membranes are important elements in these strategies. Brassinosteroids (BR) are plant steroid hormones that regulate plant growth and development and modulate their reaction against many environmental stresses including temperature stress, but their role in modifying the properties of the biological membrane is poorly known. In this paper, we characterise the molecular dynamics of chloroplast membranes that had been isolated from wild-type and a BR-deficient barley mutant that had been acclimated to low and high temperatures in order to enrich the knowledge about the role of BR as regulators of the dynamics of the photosynthetic membranes. The molecular dynamics of the membranes was investigated using electron paramagnetic resonance (EPR) spectroscopy in both a hydrophilic and hydrophobic area of the membranes. The content of BR was determined, and other important membrane components that affect their molecular dynamics such as chlorophylls, carotenoids and fatty acids in these membranes were also determined. The chloroplast membranes of the BR-mutant had a higher degree of rigidification than the membranes of the wild type. In the hydrophilic area, the most visible differences were observed in plants that had been grown at 20 °C, whereas in the hydrophobic core, they were visible at both 20 and 5 °C. There were no differences in the molecular dynamics of the studied membranes in the chloroplast membranes that had been isolated from plants that had been grown at 27 °C. The role of BR in regulating the molecular dynamics of the photosynthetic membranes will be discussed against the background of an analysis of the photosynthetic pigments and fatty acid composition in the chloroplasts.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexander Ulyanov ◽  
Dmitrii Stolbov ◽  
Serguei Savilov

Abstract Jellyfish-like graphene nanoflakes (GNF), prepared by hydrocarbon pyrolysis, are studied with electron paramagnetic resonance (EPR) method. The results are supported by X-ray photoelectron spectroscopy (XPS) data. Oxidized (GNFox) and N-doped oxidized (N-GNFox) flakes exhibit an extremely high EPR response associated with a large interlayer interaction which is caused by the structure of nanoflakes and layer edges reached by oxygen. The GNFox and N-GNFox provide the localized and mobile paramagnetic centers which are silent in the pristine (GNF p ) and N-doped (N-GNF) samples. The change in the relative intensity of the line corresponding to delocalized electrons is parallel with the number of radicals in the quaternary N-group. The environment of localized and mobile electrons is different. The results can be important in GNF synthesis and for explanation of their features in applications, especially, in devices with high sensitivity to weak electromagnetic field.


Author(s):  
Igor Tkach ◽  
Ulf Diederichsen ◽  
Marina Bennati

AbstractElectron paramagnetic resonance (EPR)-based pulsed dipolar spectroscopy measures the dipolar interaction between paramagnetic centers that are separated by distances in the range of about 1.5–10 nm. Its application to transmembrane (TM) peptides in combination with modern spin labelling techniques provides a valuable tool to study peptide-to-lipid interactions at a molecular level, which permits access to key parameters characterizing the structural adaptation of model peptides incorporated in natural membranes. In this mini-review, we summarize our approach for distance and orientation measurements in lipid environment using novel semi-rigid TOPP [4-(3,3,5,5-tetramethyl-2,6-dioxo-4-oxylpiperazin-1-yl)-L-phenylglycine] labels specifically designed for incorporation in TM peptides. TOPP labels can report single peak distance distributions with sub-angstrom resolution, thus offering new capabilities for a variety of TM peptide investigations, such as monitoring of various helix conformations or measuring of tilt angles in membranes. Graphical Abstract


1988 ◽  
Vol 40 (3) ◽  
pp. 407-417 ◽  
Author(s):  
Cheng Chu ◽  
J. L. Sperling

Electromagnetic fluctuations, induced by energetic charged particles, are calculated using correlation techniques for a uniform magnetized plasma. Power emission in the ion-cyclotron range of frequencies (ICRF) is calculated for a specific model of velocity distribution function. The emissive spectra are distinct from that of the black-body radiation and have features that are consistent with experimental observation.


1999 ◽  
Vol 13 (02) ◽  
pp. 161-189
Author(s):  
C. SYROS

The essentials of quantum mechanics are derived from Liouville's theorem in statistical mechanics. An elementary solution, g, of Liouville's equation helps to construct a differentiable N-particle distribution function (DF), F(g), satisfying the same equation. Reality and additivity of F(g): (i) quantize the time variable; (ii) quantize the energy variable; (iii) quantize the Maxwell–Boltzmann distribution; (iv) make F(g) observable through time-elimination; (v) produce the Planck constant; (vi) yield the black-body radiation spectrum; (vii) support chronotopology introduced axiomatically; (viii) the Schrödinger and the Klein–Gordon equations follow. Hence, quantum theory appears as a corollary of Liouville's theorem. An unknown connection is found allowing the better understanding of space-times and of these theories.


Sign in / Sign up

Export Citation Format

Share Document