scholarly journals Maintenance and Inspection of Fiber-Reinforced Polymer (FRP) Bridges: A Review of Methods

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7826
Author(s):  
Long Tang

Fiber-reinforced polymers (FRPs) are materials that comprise high-strength continuous fibers and resin polymer, and the resins comprise a matrix in which the fibers are embedded. As the technique of FRP production has advanced, FRPs have attained many incomparable advantages over traditional building materials such as concrete and steel, and thus they play a significant role in the strengthening and retrofitting of concrete structures. Bridges that are built out of FRPs have been widely used in overpasses of highways, railways and streets. However, damages in FRP bridges are inevitable due to long-term static and dynamic loads. The health of these bridges is important. Here, we review the maintenance and inspection methods for FRP structures of bridges and analyze the advantages, shortcomings and costs of these methods. The results show that two categories of methods should be used sequentially. First, simple methods such as visual inspection, knock and dragging-chain methods are used to determine the potential damage, and then radiation, modal analysis and load experiments are used to determine the damage mode and degree. The application of FRP is far beyond the refurbishment, consolidation and construction of bridges, and these methods should be effective to maintain and inspect the other FRP structures.

2008 ◽  
Vol 23 (4) ◽  
pp. 1042-1050 ◽  
Author(s):  
A. Cremona ◽  
E. Vassallo ◽  
A. Merlo ◽  
A. Srikantha Phani ◽  
L. Laguardia

Amorphous siliconlike films with hydrophobic functionalities have been deposited by plasma-enhanced chemical-vapor deposition on carbon-fiber-reinforced polymer (CFRP) unidirectional laminates used for micromechanical applications where high strength-to-weight and high stiffness-to-weight ratios are required. To improve long-term geometrical stability in ultrahigh-precision machine structures, hydrophobic CFRP materials are desirable. Three layers have been grown with different plasma-process parameters from a mixture of hexamethyldisiloxane, O2, and Ar. Chemical composition, water contact angle, surface energy, morphology, and tribological properties have been evaluated to choose the one that best fulfills hydrophobicity, wear, and scratch resistance. Wear tests have also been carried out on CFRP laminates coated with a polyurethane layer to compare the wear performance of the above specimens with that of a conventional hydrophobic coating. Scanning electron microscope images show a very good adhesion of the films to the composite substrate because the failure of the film and of the substrate (such as fiber failure) take place simultaneously.


2018 ◽  
Vol 52 (23) ◽  
pp. 3173-3181 ◽  
Author(s):  
Kuldeep Agarwal ◽  
Suresh K Kuchipudi ◽  
Benoit Girard ◽  
Matthew Houser

Fiber reinforced polymer composites have been around for many decades but recently their use has started to increase in multiple industries such as automotive, aerospace, and construction. The conventional composite manufacturing processes such as wet lay-up, resin transfer molding, automatic lay ups etc. suffer from a lot of practical and material issues which have limited their use. The mechanical properties of the parts produced by such processes also suffer from variation that causes problems downstream. Composites based additive manufacturing processes such as Fused Deposition Modeling and Composite Filament Fabrication are trying to remove some of the barriers to the use of composites. Additive manufacturing processes offer more design and material freedom than conventional composite manufacturing processes. This paper compares conventional composite processes for the manufacturing of Epoxy-Fiberglass fiber reinforced polymers with composite filament fabrication based Nylon-Fiberglass fiber reinforced polymers. Mechanical properties such as tensile strength, elastic modulus, and fatigue life are compared for the different processes. The effect of process parameters on these mechanical properties for the composite filament fabrication based process is also examined in this work. It is found that the composite filament fabrication based process is very versatile and the parts manufactured by this process can be used in various applications.


2011 ◽  
Vol 255-260 ◽  
pp. 3124-3128
Author(s):  
Jian Hui Li ◽  
Ying Li ◽  
Zong Cai Deng

Corroded RC columns do not possess necessary ductility to dissipate seismic energy during a major earthquake, the study investigates the use of hybrid fiber reinforced polymer (FRP) wrapping as a method of retrofitting non-ductile corroded RC columns, and a model to determine the envelope response of RC corroded columns strengthened with hybrid FRP are presented based on cross-section analysis for undamaged RC element. The results show that the technique of strengthening corroded RC column with hybrid FRP is quite effective, the envelope curve estimated using the linear plane assumption with modification by reinforcement slip model, may still be used as the envelope curve of RC corroded columns strengthened with hybrid FRP, a good agreement between analytical and experimental results is observed.


2020 ◽  
Vol 23 (8) ◽  
pp. 1534-1547 ◽  
Author(s):  
Jingting Huang ◽  
Tao Li ◽  
Dayong Zhu ◽  
Peng Gao ◽  
An Zhou

This article studies the compressive behavior of concrete columns confined by different basalt fiber–reinforced polymers. A total of 30 columns were divided into 10 groups according to section shapes (circular and square), basalt fiber–reinforced polymer types (unidirectional basalt fiber–reinforced polymer, bidirectional basalt fiber–reinforced polymer, and hybrid basalt fiber–reinforced polymer/carbon fiber–reinforced polymers), and number of layers (0, 1, and 2). The test results showed that the compressive strengths of confined specimens increased by 20%–71% for circular columns and by 23%–41% for square columns. Similarly, the ultimate strains improved by 49%–296% for circular specimens and by 45%–145% for square specimens. The two-layer basalt fiber–reinforced polymer jacket had the best confinement effect, whereas the confining effect of bidirectional basalt fiber–reinforced polymer wrapping was relatively lower than that of unidirectional basalt fiber–reinforced polymer wrapping. Moreover, both the strength and ultimate strain of confined concrete improved with increasing number of basalt fiber–reinforced polymer layers. Finite element numerical models were also developed and verified by experimental results, and then the stress distributions of basalt fiber–reinforced polymer jackets and cross-sectional concrete were presented. Based on the test results and experimental data from several existing studies, modified strength and ultimate strain models were further developed for basalt fiber–reinforced polymer-confined circular and square columns.


2011 ◽  
Vol 243-249 ◽  
pp. 5618-5623
Author(s):  
Jian Hui Li ◽  
Ying Li ◽  
Zong Cai Deng

The research program is aimed at investigating the effectiveness of application of good ductile hybrid fiber reinforced polymer (FRP) to upgrade corroded RC beams. A total of 5 RC beams are tested under flexural load, the results show that compared with the un-strengthened corroded RC beam, the crack, yield, maximum and ultimate load of corroded RC beam strengthened with hybrid FRP sheets is increased by 14%, 35%, 102% and 109% respectively, and the displacement ductility factor is only decreased by 11%, which indicate that the hybrid FRP sheets can improve significantly the flexural performance of corroded RC beam.


2015 ◽  
Vol 766-767 ◽  
pp. 133-139 ◽  
Author(s):  
Jeswin Arputhabalan ◽  
K. Palanikumar

This paper deals with tensile properties of natural fiber reinforced polymer composites. Natural fibers have recently found increasing use in various fields as an alternative to synthetic fiber reinforced polymers. Due to this they have become attractive to engineers, researchers and scientists. Natural fibers are replacing conventional fibers such as glass, aramid and carbon due to their eco-friendly nature, lesser cost, good mechanical properties, better specific strength, bio-degradability and non-abrasive characteristics. The adhesion between the fibers and the matrix highly influence the tensile properties of both thermoset and thermoplastic natural fiber reinforced polymer composites. In order to enhance the tensile properties by improving the strength of fiber and matrix bond many chemical modifications are normally employed. In most cases the tensile strengths of natural fiber reinforced polymer composites are found to increase with higher fiber content, up to a maximum level and then drop, whereas the Young’s modulus continuously increases with increasing fiber loading. It has been experimentally found that tensile strength and Young’s modulus of reinforced composites increased with increase in fiber content [1].


2021 ◽  
Author(s):  
Lesha Kolubinski

Smart structures and structural health monitoring are advancing fields that have potential to yield many benefits to many industries and applications. It is important for applicable sensing technologies to mature so that they may be relied upon. Fiber optic sensors are one such sensing method. Their use in fiber reinforced polymer, FRP, composite materials is reviewed and examined, specifically embedded fiber optic sensors. A fabrication method for embedding fiber Bragg grating, FBG, fiber optic sensors in FRP specimens was developed. This fabrication method is then validated through mechanical testing. Initial specimen stiffness's were determined and the results form the FBGs compared well with mechanical resistance strain gauges. The FBG sensors were also successful in detecting drops in stiffness of the specimens when subjected to fatigue loading.


Sign in / Sign up

Export Citation Format

Share Document