scholarly journals Ionization Radiation Shielding Effectiveness of Lead Acetate, Lead Nitrate, and Bismuth Nitrate-Doped Zinc Oxide Nanorods Thin Films: A Comparative Evaluation

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 3
Author(s):  
Mohamed Abdulsattar Al-Balushi ◽  
Naser M. Ahmed ◽  
Samer H. Zyoud ◽  
Mohammed Khalil Mohammed Ali ◽  
Hanan Akhdar ◽  
...  

The fabrication of Nano-based shielding materials is an advancing research area in material sciences and nanotechnology. Although bulky lead-based products remain the primary choice for radiation protection, environmental disadvantages and high toxicity limit their potentials, necessitating less costly, compatible, eco-friendly, and light-weight alternatives. The theme of the presented investigation is to compare the ionization radiation shielding potentialities of the lead acetate (LA), lead nitrate (LN), and bismuth nitrate (BN)-doped zinc oxide nanorods-based thin films (ZONRs-TFs) produced via the chemical bath deposition (CBD) technique. The impact of the selected materials’ doping content on morphological and structural properties of ZONRs-TF was investigated. The X-ray diffractometer (XRD) analyses of both undoped and doped TFs revealed the existence of hexagonal quartzite crystal structures. The composition analysis by energy dispersive (EDX) detected the corrected elemental compositions of the deposited films. Field emission scanning electronic microscope (FESEM) images of the TFs showed highly porous and irregular surface morphologies of the randomly aligned NRs with cracks and voids. The undoped and 2 wt.% BN-doped TFs showed the smallest and largest grain size of 10.44 nm and 38.98 nm, respectively. The linear attenuation coefficient (µ) values of all the optimally doped ZONRs-TFs measured against the X-ray photon irradiation disclosed their excrement shielding potency. The measured µ values of the ZONRs-TFs displayed the trend of 1 wt.% LA-doped TF > 1 wt.% LN-doped TF > 3 wt.% BN-doped TF > undoped TFs). The values of μ of the ZONRs-TFs can be customized by adjusting the doping contents, which in turn controls the thickness and morphology of the TFs. In short, the proposed new types of the LA-, LN- and BN-doped ZONRs-TFs may contribute towards the development of the prospective ionization radiation shielding materials.

2013 ◽  
Vol 667 ◽  
pp. 375-379 ◽  
Author(s):  
M. Awalludin ◽  
Mohamad Hafiz Mamat ◽  
Mohd Zainizan Sahdan ◽  
Z. Mohamad ◽  
Mohamad Rusop

This paper focus on zinc oxide (ZnO) nanorods prepared using sol-gel immersion method immersed at different time. Immersion times have been varied 1~24 hr and the characteristics of each sample have been observed. The effects of immersion time on ZnO nanorods thin films have been studied in surface morphology and structural properties using Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD), respectively.


2019 ◽  
Vol 9 ◽  
pp. 184798041984436 ◽  
Author(s):  
Alejandro Aranda ◽  
Richard Landers ◽  
Patricio Carnelli ◽  
Roberto Candal ◽  
Hugo Alarcón ◽  
...  

The present article examines the synthesis and characterization of zinc oxide nanorods grown on zinc oxide and silver nanoparticle seeds. Zinc oxide seeds were electrodeposited on a support of fluorine-doped tin oxide glass and heat-treated at 380°C. Silver nanoparticles were then deposited on this substrate, which was heat-treated at 160°C. Their presence was confirmed using ultraviolet–visible spectroscopy, by observing an absorption peak around 400 nm, corresponding to surface plasmon resonance. Growth of zinc oxide nanorods was achieved in a chemical bath at 90°C. The obtained films were analyzed by cyclic voltammetry, X-ray diffraction, and scanning electron microscopy. They consisted of zinc oxide with a Wurtzite-type crystal structure, arranged as nanorods of 50 nm. X-ray photoelectron spectroscopy exhibits peaks attributed to silver (0) and to the formation of silver oxide on the silver nanoparticle surface. In addition, two types of oxygen (O 1 s) were observed: oxygen from the crystalline network (O–2) and chemisorbed oxygen (–OH), for the seed and the nanorod films, respectively. The nanorods grown on zinc oxide seeds with silver deposits had a round shape and greater photoactivity than those grown without silver. This difference is attributed to the additional reflection that silver provides to the light reaching the film, thereby increasing the photogeneration from the charge carriers.


2019 ◽  
Vol 96 ◽  
pp. 109348 ◽  
Author(s):  
M. Raveendra Kiran ◽  
Hidayath Ulla ◽  
M.N. Satyanarayan ◽  
G. Umesh

2020 ◽  
Vol 90 (7) ◽  
pp. 1132 ◽  
Author(s):  
С.С. Налимова ◽  
З.В. Шомахов ◽  
В.А. Мошников ◽  
А.А. Бобков ◽  
А.А. Рябко ◽  
...  

The features of the formation of zinc stannate nanostructures are considered that are of interest for gas sensors, solar energy and conducting transparent electronics. The samples were obtained by hydrothermal method using zinc oxide nanorods as a template with the variation of synthesis time and investigated by X-ray photoelectron spectroscopy. It is shown that this method can be used to analyze the formation of zinc stannate.


2021 ◽  
Vol 26 (6) ◽  
pp. 481-490
Author(s):  
Z.V. Shomakhov ◽  
◽  
S.S. Nalimova ◽  
A.A. Bobkov ◽  
V.A. Moshnikov ◽  
...  

The control of the nanomaterials surface’s hydrophilic properties is of interest for various applications, including optics, photocatalysis, and spintronics. In this work, techniques for designing the defective structure of the surface layers of faceted zinc oxide nanorods during sacrificial doping with iodine by hydrothermal synthesis were considered. The features of the chemical composition of the surface of the obtained layers were studied using X-ray photoelectron spectroscopy (XPS). It was found that peaks corresponding to the binding energy of iodine were not observed in the X-ray photoelectron spectra. An additional peak with a binding energy of 531.8 eV, corresponding to the oxygen of OH groups, was observed in the O 1s level spectrum for zinc oxide nanorods doped with iodine. During the heat treatment of the synthesized layers, iodine evaporates, which leads to a change in the surface composition and an increase in the oxygen content of the surface hydroxyl groups. A model has been proposed to explain the experimental results. It has been established that XPS techniques are effective for analyzing the defective surface structure of functional layers based on faceted zinc oxide nanorods.


2011 ◽  
Vol 15 (6) ◽  
pp. 401-405 ◽  
Author(s):  
S K Lim ◽  
H Q Le ◽  
G K L Goh ◽  
K K Lin ◽  
S B Dolmanan

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 877 ◽  
Author(s):  
Swarup Roy ◽  
Hyun Chan Kim ◽  
Pooja S. Panicker ◽  
Jong-Whan Rhim ◽  
Jaehwan Kim

Here, we report the fabrication and characterization of cellulose nanofiber (CNF)-based nanocomposite films reinforced with zinc oxide nanorods (ZnOs) and grapefruit seed extract (GSE). The CNF is isolated via a combination of chemical and physical methods, and the ZnO is prepared using a simple precipitation method. The ZnO and GSE are used as functional nanofillers to produce a CNF/ZnO/GSE film. Physical (morphology, chemical interactions, optical, mechanical, thermal stability, etc.) and functional (antimicrobial and antioxidant activities) film properties are tested. The incorporation of ZnO and GSE does not impact the crystalline structure, mechanical properties, or thermal stability of the CNF film. Nanocomposite films are highly transparent with improved ultraviolet blocking and vapor barrier properties. Moreover, the films exhibit effective antimicrobial and antioxidant actions. CNF/ZnO/GSE nanocomposite films with better quality and superior functional properties have many possibilities for active food packaging use.


Sign in / Sign up

Export Citation Format

Share Document