X-ray Photoelectron Spectroscopy of Surface Layers of Faceted Zinc Oxide Nanorods

2021 ◽  
Vol 26 (6) ◽  
pp. 481-490
Author(s):  
Z.V. Shomakhov ◽  
◽  
S.S. Nalimova ◽  
A.A. Bobkov ◽  
V.A. Moshnikov ◽  
...  

The control of the nanomaterials surface’s hydrophilic properties is of interest for various applications, including optics, photocatalysis, and spintronics. In this work, techniques for designing the defective structure of the surface layers of faceted zinc oxide nanorods during sacrificial doping with iodine by hydrothermal synthesis were considered. The features of the chemical composition of the surface of the obtained layers were studied using X-ray photoelectron spectroscopy (XPS). It was found that peaks corresponding to the binding energy of iodine were not observed in the X-ray photoelectron spectra. An additional peak with a binding energy of 531.8 eV, corresponding to the oxygen of OH groups, was observed in the O 1s level spectrum for zinc oxide nanorods doped with iodine. During the heat treatment of the synthesized layers, iodine evaporates, which leads to a change in the surface composition and an increase in the oxygen content of the surface hydroxyl groups. A model has been proposed to explain the experimental results. It has been established that XPS techniques are effective for analyzing the defective surface structure of functional layers based on faceted zinc oxide nanorods.

1995 ◽  
Vol 60 (3) ◽  
pp. 383-392 ◽  
Author(s):  
Zdeněk Bastl

The effects of ion bombardment and r.f. plasma oxidation of graphite surfaces on subsequent growth and electronic properties of vacuum deposited palladium clusters have been investigated by methods of X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy with X-ray excitation (XAES). Due to the significantly increased density of surface defects on which the nucleation process occurs the bulk value of the Pd 3d core level binding energy is achieved at higher surface coverage by palladium on bombarded surfaces than on ordered graphite. Angle resolved photoelectron spectra of oxidized graphite surfaces reveal significant embedding of oxygen in graphite surface layers. The C 1s and O 1s photoelectron spectra are consistent with presence of two major oxygen species involving C-O and C=O type linkages which are not homogeneously distributed within the graphite surface layers. Two effects were observed on oxidized surfaces: an increase of palladium dispersion and interaction of the metal clusters with surface oxygen groups. Using the simple interpretation of the modified Auger parameter the relaxation and chemical shift contributions to the measured Pd core level shifts are estimated. In the region of low surface coverage by palladium the effect of palladium-oxygen interaction on Pd core level binding energy exceeds the effects of increased dispersity.


2019 ◽  
Vol 9 ◽  
pp. 184798041984436 ◽  
Author(s):  
Alejandro Aranda ◽  
Richard Landers ◽  
Patricio Carnelli ◽  
Roberto Candal ◽  
Hugo Alarcón ◽  
...  

The present article examines the synthesis and characterization of zinc oxide nanorods grown on zinc oxide and silver nanoparticle seeds. Zinc oxide seeds were electrodeposited on a support of fluorine-doped tin oxide glass and heat-treated at 380°C. Silver nanoparticles were then deposited on this substrate, which was heat-treated at 160°C. Their presence was confirmed using ultraviolet–visible spectroscopy, by observing an absorption peak around 400 nm, corresponding to surface plasmon resonance. Growth of zinc oxide nanorods was achieved in a chemical bath at 90°C. The obtained films were analyzed by cyclic voltammetry, X-ray diffraction, and scanning electron microscopy. They consisted of zinc oxide with a Wurtzite-type crystal structure, arranged as nanorods of 50 nm. X-ray photoelectron spectroscopy exhibits peaks attributed to silver (0) and to the formation of silver oxide on the silver nanoparticle surface. In addition, two types of oxygen (O 1 s) were observed: oxygen from the crystalline network (O–2) and chemisorbed oxygen (–OH), for the seed and the nanorod films, respectively. The nanorods grown on zinc oxide seeds with silver deposits had a round shape and greater photoactivity than those grown without silver. This difference is attributed to the additional reflection that silver provides to the light reaching the film, thereby increasing the photogeneration from the charge carriers.


2020 ◽  
Vol 90 (7) ◽  
pp. 1132 ◽  
Author(s):  
С.С. Налимова ◽  
З.В. Шомахов ◽  
В.А. Мошников ◽  
А.А. Бобков ◽  
А.А. Рябко ◽  
...  

The features of the formation of zinc stannate nanostructures are considered that are of interest for gas sensors, solar energy and conducting transparent electronics. The samples were obtained by hydrothermal method using zinc oxide nanorods as a template with the variation of synthesis time and investigated by X-ray photoelectron spectroscopy. It is shown that this method can be used to analyze the formation of zinc stannate.


MRS Advances ◽  
2016 ◽  
Vol 1 (6) ◽  
pp. 433-439 ◽  
Author(s):  
Asghar Ali ◽  
Patrick Morrow ◽  
Redhouane Henda ◽  
Ragnar Fagerberg

AbstractThis study reports on the preparation of cobalt doped zinc oxide (Co:ZnO) films via pulsed electron beam ablation (PEBA) from a single target containing 20 w% Co on sapphire (0001) and silicon (100) substrates. The films have been deposited at various temperatures (350оC, 400оC, 450оC) and pulse frequencies (2 Hz, 4 Hz), under a background argon (Ar) pressure of about 3 mtorr, and an accelerating voltage of 14 kV. The surface morphology has been examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). According to SEM analysis, the films consist of nano-globules whose size is in the range of 80-178 nm. Energy dispersive x-ray spectroscopy (EDX) reveals that deposition is congruent and the prepared films contain ∼20±5 w% cobalt. It has been found that the nano-globules in the deposited films are cobalt-rich zones containing ∼70 w% Co. From x-ray photoelectron spectroscopy (XPS) analysis, Co 2p3/2 peaks indicate that the deposited films contain CoO (binding energy = 780.5 eV) as well as metallic Co (binding energy = 778.1-778.5 eV). X-ray diffraction (XRD) analysis supports the presence of metallic Co hcp phase (2ϴ = 44.47° and 47.43°) in the films.


2013 ◽  
Vol 667 ◽  
pp. 375-379 ◽  
Author(s):  
M. Awalludin ◽  
Mohamad Hafiz Mamat ◽  
Mohd Zainizan Sahdan ◽  
Z. Mohamad ◽  
Mohamad Rusop

This paper focus on zinc oxide (ZnO) nanorods prepared using sol-gel immersion method immersed at different time. Immersion times have been varied 1~24 hr and the characteristics of each sample have been observed. The effects of immersion time on ZnO nanorods thin films have been studied in surface morphology and structural properties using Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD), respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Bong Ju Lee ◽  
Ho Jun Song ◽  
Jin Jeong

Al-doped zinc-oxide (AZO) thin films were prepared by RF magnetron sputtering at different oxygen partial pressures and substrate temperatures. The charge-carrier concentrations in the films decreased from 1.69 × 1021to 6.16 × 1017 cm−3with increased gas flow rate from 7 to 21 sccm. The X-ray diffraction (XRD) patterns show that the (002)/(103) peak-intensity ratio decreased as the gas flow rate increased, which was related to the increase of AZO thin film disorder. X-ray photoelectron spectra (XPS) of the O1s were decomposed into metal oxide component (peak A) and the adsorbed molecular oxygen on thin films (peak B). The area ratio of XPS peaks (A/B) was clearly related to the stoichiometry of AZO films; that is, the higher value of A/B showed the higher stoichiometric properties.


1987 ◽  
Vol 65 (5) ◽  
pp. 1058-1064 ◽  
Author(s):  
K. M. Wilson-Yang ◽  
George Burns

The once colourful mural paintings at the Beni Hasan tombs (ca. 2100 B.C.), an important Egyptian archaeological site, are covered with an obscuring grey deposit. Qualitative observations made over the past 150 years were assembled and correlated with each other by us. Cumulatively, they indicate that recently the development of this layer has accelerated. To study this surface degradation, X-ray photoelectron spectra of fragments from the painted walls have been collected. Empirical XPS sensitivity factors have been employed to treat the data semiquantitatively. Three types of surfaces were identified. The first surface consists of CaCO3 and SiO2 as major constituents, and was the only surface identified previously. Our XPS data indicate that it also contains Al2O3, NaCl, MgO, sulphates, and phosphates as minor and trace components. The second surface consists predominantly of aluminium silicates. The third surface consists mostly of calcium carbonate. A preliminary mechanism for opaque layer formation is proposed herein. It suggests that the principal physicochemical processes are adsorption of water in the presence of carbon dioxide, followed by dissolution of the substrate walls upon which the murals were painted. This mechanism is consistent with our finding that mural deterioration is recent; it also indicates that deterioration is progressive, continuous, and cumulative. Further experiments are designed to verify the proposed mechanism. Two mechanisms proposed earlier are found to be inconsistent with at least some of our findings. Relatively recent efforts in removing obtrusive surface layers with dilute HCl were found to be performed carefully; there was no evidence of excess chlorides on cleaned surfaces. However, this finding does not provide a guarantee that murals were undamaged by HCl below the surface. It does suggest that progressive damage due to the formation of hygroscopic CaCl2 on the surface has been avoided.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 3
Author(s):  
Mohamed Abdulsattar Al-Balushi ◽  
Naser M. Ahmed ◽  
Samer H. Zyoud ◽  
Mohammed Khalil Mohammed Ali ◽  
Hanan Akhdar ◽  
...  

The fabrication of Nano-based shielding materials is an advancing research area in material sciences and nanotechnology. Although bulky lead-based products remain the primary choice for radiation protection, environmental disadvantages and high toxicity limit their potentials, necessitating less costly, compatible, eco-friendly, and light-weight alternatives. The theme of the presented investigation is to compare the ionization radiation shielding potentialities of the lead acetate (LA), lead nitrate (LN), and bismuth nitrate (BN)-doped zinc oxide nanorods-based thin films (ZONRs-TFs) produced via the chemical bath deposition (CBD) technique. The impact of the selected materials’ doping content on morphological and structural properties of ZONRs-TF was investigated. The X-ray diffractometer (XRD) analyses of both undoped and doped TFs revealed the existence of hexagonal quartzite crystal structures. The composition analysis by energy dispersive (EDX) detected the corrected elemental compositions of the deposited films. Field emission scanning electronic microscope (FESEM) images of the TFs showed highly porous and irregular surface morphologies of the randomly aligned NRs with cracks and voids. The undoped and 2 wt.% BN-doped TFs showed the smallest and largest grain size of 10.44 nm and 38.98 nm, respectively. The linear attenuation coefficient (µ) values of all the optimally doped ZONRs-TFs measured against the X-ray photon irradiation disclosed their excrement shielding potency. The measured µ values of the ZONRs-TFs displayed the trend of 1 wt.% LA-doped TF > 1 wt.% LN-doped TF > 3 wt.% BN-doped TF > undoped TFs). The values of μ of the ZONRs-TFs can be customized by adjusting the doping contents, which in turn controls the thickness and morphology of the TFs. In short, the proposed new types of the LA-, LN- and BN-doped ZONRs-TFs may contribute towards the development of the prospective ionization radiation shielding materials.


2019 ◽  
Vol 19 (03) ◽  
pp. 1950019
Author(s):  
A. R. Yadav ◽  
S. K. Dubey ◽  
R. L. Dubey ◽  
N. Subramanyam ◽  
I. Sulania

Gallium arsenide (GaAs) implanted with silicon forming intersubband of SiGaAs is a promising material for making novel electronic and optoelectronic devices. This paper is focused on finding optimum fluence condition for formation of intersubband of SiGaAs in GaAs sample after implantation with 50[Formula: see text]keV silicon negative ions with fluences varying between [Formula: see text] and [Formula: see text] ions cm[Formula: see text]. The GaAs samples were investigated using X-ray photoelectron spectroscopy (XPS), UV-Vis.-NIR spectroscopy and X-ray diffraction (XRD) techniques. The X-ray photoelectron spectra for unimplanted sample showed peaks at binding energy of 18.74[Formula: see text]eV and 40.74[Formula: see text]eV indicating Ga3d and As3d core level, whereas the corresponding core level peaks for implanted sample were observed at binding energy of 19.25[Formula: see text]eV and 41.32[Formula: see text]eV. The shift in Ga3d and As3d core levels towards higher binding energy side in the implanted sample with respect to unimplanted sample were indicative of change in chemical state environment of Ga–As bond. The relative atomic percentage concentration of elemental composition measured using casa XPS software showed change in As/Ga ratio from 0.89 for unimplanted sample to 1.13 for sample implanted with the fluence of [Formula: see text] ion cm[Formula: see text]. The UV-Vis-NIR spectra showed absorption band between 1.365[Formula: see text]eV and 1.375[Formula: see text]eV due to the formation of intersubband of SiGaAs for fluences greater than [Formula: see text] ion cm[Formula: see text]. The GaAs crystallite size calculated using Brus formula was found to vary between 162[Formula: see text]nm and 540[Formula: see text]nm, respectively. The XRD spectra showed the presence of Bragg’s peak at 53.98∘ indicating (311) silicon reflection. The silicon crystallite size determined from full width at half maxima (FWHM) of (311) XRD peak was found to vary between 110[Formula: see text]nm and 161[Formula: see text]nm, respectively.


Author(s):  
Светлана Сергеевна Налимова ◽  
Замир Валериевич Шомахов ◽  
Ксения Николаевна Пунегова ◽  
Андрей Андреевич Рябко ◽  
Александр Иванович Максимов

Наностержни оксида цинка синтезированы гидротермальным методом. Проведена обработка полученных образцов в водно-спиртовом растворе станната калия и мочевины при 170°С в течение 30 и 60 минут. В результате получены наноструктуры Zn - Sn - O. Химический состав поверхности образцов ZnO и Zn - Sn - O исследован с помощью рентгеновской фотоэлектронной спектроскопии. Проанализирована их чувствительность к парам изопропилового спирта (1000 мд) при температурах 120 °С, 180°С, 250 °С. Показано перераспределение электронной плотности при формировании композитных наноструктур Zn - Sn - O, проявляющееся в химическом сдвиге пиков O1s и Zn2p. Это свидетельствует о перестроении химических связей при замещении атомов цинка оловом. Обнаружено, что чувствительность композитных структур к парам изопропилового спирта значительно превышает чувствительность ZnO во всем исследуемом температурном диапазоне. Улучшение газочувствительных свойств связано с наличием в образцах системы Zn - Sn - O поверхностных центров различного типа, принимающих участие в адсорбции и окислении изопропилового спирта. Zinc oxide nanorods were synthesized by the hydrothermal method. The obtained samples were processed in an aqueous-alcohol solution of potassium stannate and urea at 170 °C during different times. As a result, Zn - Sn - O nanostructures were obtained. The surface chemical composition of ZnO and Zn - Sn - O was studied using the X-ray photoelectron spectroscopy. Its sensitivity to vapors of isopropyl alcohol (1000 ppm) at 120 °C, 180 °C, 250 °C was analyzed. The electron density redistribution during the Zn - Sn - O composite nanostructures formation manifests itself in the chemical shift of the O1s and Zn2p peaks. It confirm the rearrangement of chemical bonds when zinc atoms are replaced by tin ones. It was found that the sensitivity of composite structures to isopropyl alcohol vapors significantly exceeds that of ZnO in the entire temperature range under study. The improvement of gas-sensitive properties is associated with the presence of various types of surface centers in the Zn - Sn - O samples that participate in the adsorption and oxidation of isopropyl alcohol.


Sign in / Sign up

Export Citation Format

Share Document