scholarly journals Model of the Temperature Influence on Additively Manufactured Carbon Fibre Reinforced Polymer Samples with Embedded Fibre Bragg Grating Sensors

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 222
Author(s):  
Torkan Shafighfard ◽  
Magdalena Mieloszyk

This study investigates the thermo-mechanical behaviour of additively manufactured Carbon Fiber Reinforced Polymer (CFRP) with embedded Fibre Bragg Grating (FBG) sensors with respect to their feasibility for utilising them under thermal loading. This was conducted through the Finite Element Method (FEM) inside an ABAQUS environment. Numerical simulation was complemented by several experimental investigations in order to verify the computational results achieved for the specimens exposed to thermal loading. FBG sensors, incorporated into the material by embedding technique, were employed to measure the strains of the samples subjected to elevated temperatures. It was shown that the strains given by numerical simulation were in good agreement with the experimental investigation except for a few errors due to the defects created within the layers during Additive Manufacturing (AM) process. It was concluded that the embedding FBG sensors were capable of identifying thermo-mechanical strain accurately for 3D-printed composite structures. Therefore, the findings of this article could be further developed for other types of material and loading conditions.

2018 ◽  
Vol 92 (3) ◽  
pp. 355-367
Author(s):  
Cansu Karatas ◽  
Boray Degerliyurt ◽  
Yavuz Yaman ◽  
Melin Sahin

Purpose Structural health monitoring (SHM) has become an attractive subject in aerospace engineering field considering the opportunity to avoid catastrophic failures by detecting damage in advance and to reduce maintenance costs. Fibre Bragg Grating (FBG) sensors are denoted as one of the most promising sensors for SHM applications as they are lightweight, immune to electromagnetic effects and able to be embedded between the layers of composite structures. The purpose of this paper is to research on and demonstrate the feasibility of FBG sensors for SHM of composite structures. Design/methodology/approach Applications on thin composite beams intended for SHM studies are presented. The sensor system, which includes FBG sensors and related interrogator system, and manufacturing of the beams with embedded sensors, are detailed. Static tension and torsion tests are conducted to verify the effectiveness of the system. Strain analysis results obtained from the tests are compared with the ones obtained from the finite element analyses conducted using ABAQUS® software. In addition, the comparison between the data obtained from the FBG sensors and from the strain gauges is made by also considering the noise content. Finally, fatigue test under torsion load is conducted to observe the durability of FBG sensors. Findings The results demonstrated that FBG sensors are feasible for SHM of composite structures as the strain data are accurate and less noisy compared to that obtained from the strain gauges. Furthermore, the convenience of obtaining reliable data between the layers of a composite structure using embedded FBG sensors is observed. Practical implications Observing the advantages of the FBG sensors for strain measurement will promote using FBG sensors for damage detection related to the SHM applications. Originality/value This paper presents applications of FBG sensors on thin composite beams, which reveal the suitability of FBG sensors for SHM of lightweight composite structures.


2018 ◽  
Vol 203 ◽  
pp. 04001
Author(s):  
Isah W. Balarabe ◽  
Mohamad Hisham ◽  
Ahmad R. Niraku ◽  
Indra S.H. Harahap

Simple experiments for calibrating Fibre Bragg Grating (FBG) in order to measure strain and temperature have been successfully demonstrated in this study. This will allow convenient use of FBG sensor in the laboratory for measuring quantities. Linear curve fittings were employed for both the strain and temperature, and R2 values are determined respectively. The result showed a perfect correlation between FBG, strain and temperature. The approach can be employed with ease, simplicity in an inexpensive manner, in order harness the advantages offered by FBG sensors such as accuracy, precision, speed and high resolution.


2005 ◽  
Vol 16 (12) ◽  
pp. 2415-2424 ◽  
Author(s):  
Hang-yin Ling ◽  
Kin-tak Lau ◽  
Li Cheng ◽  
Kwok-wing Chow

Vibration ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 700-721
Author(s):  
Magdalena Mieloszyk

The paper presents the analysis of the possibility of fatigue crack detection and monitoring its propagation process using fibre Bragg grating (FBG) sensors. The investigations were carried out on an aluminium alloy sample (a part of the Mi-2 helicopter rotor blade). During the fatigue test, the sample was equipped with FBG sensors applied for strain measurement and the vibration-based strain monitoring. It was observed that the strain curves determined by the FBG sensors agreed well with the fatigue force profile. However, the strain curves were almost insensitive to the crack propagation process, except in the last stage of the test, when the crack length was equal to 25 mm. The strain values and the natural frequencies of the sample that were determined experimentally were compared with the values achieved from the finite element method model, with both methods showing good agreement. Additionally, spectrogram-based analyses were performed, focused on the acoustic waves phenomena related to a crack propagation process. It was confirmed that the proposed signal processing method, based on spectrogram analyses, can be applied for the detection of fatigue crack development in metal structures.


2003 ◽  
Vol 14 (7) ◽  
pp. 1131-1136 ◽  
Author(s):  
S Pal ◽  
J Mandal ◽  
T Sun ◽  
K T V Grattan ◽  
M Fokine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document