scholarly journals How Does Irrigation Affect Crop Growth? A Mathematical Modeling Approach

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 151
Author(s):  
Vicente Díaz-González ◽  
Alejandro Rojas-Palma ◽  
Marcos Carrasco-Benavides

This article presents a qualitative mathematical model to simulate the relationship between supplied water and plant growth. A novel aspect of the construction of this phenomenological model is the consideration of a structure of three phases: (1) The soil water availability, (2) the available water inside the plant for its growth, and (3) the plant size or amount of dry matter. From these phases and their interactions, a model based on a three-dimensional nonlinear dynamic system was proposed. The results obtained showed the existence of a single equilibrium point, global and exponentially stable. Additionally, considering the framework of the perturbation theory, this model was perturbed by incorporating irrigation to the available soil water, obtaining some stability results under different assumptions. Later through the control theory, it was demonstrated that the proposed system was controllable. Finally, a numerical simulation of the proposed model was carried out, to depict the soil water content and plant growth dynamic and its agreement with the results of the mathematical analysis. In addition, a specific calibration for field data from an experiment with wheat was considered, and these parameters were then used to test the proposed model, obtaining an error of about 6% in the soil water content estimation.

The conservation of water resources through their optimal use is a compulsory for countries with water shortages in the arid and semi-arid regions, and it should be in an environmentally friendly manner to avoid the serious consequences of the use of environmentally harmful substances, the implications of which are currently evident from climate change, pollution of water bodies, soils, etc. Since Egypt is one of those countries suffering from water scarcity and uses about 82.5 percent of its water consumption in agriculture, according to data of the Ministry of Irrigation in 2010, so this research is focusing on the use of new methods to increase the efficiency of irrigation water, to achieve high productivity of agricultural crops with less water use that will certainly help to alleviate or solve the water scarcity issue. The study used a physical based model, to simulate the methods used to increase sand soil properties to ensure larger water retention index. Within this work, soil have been sampled from different areas, to simulate the behavior of arid lands, under different water retention techniques. Soil was exposed to different techniques, as it was mixed with soil additives in different quantities and different types. Physical barriers of cohesive soil and polyethylene sheets were used in addition to studying the effect of mulch on water storage capacity in noncohesive soil. Water retention have been measured using the direct method of determination soil water content by oven drying and the volumetric water content (𝞱v ) with time graphs have been plotted in groups, as well as the cultivated plants have been monitored as to measure the influence on plants growing and irrigation efficiency. And the experiment showed that the use of rice straw (RS) and wheat straw (WS) in the powder condition have a significant effect in increasing in the soil water content and even to the plant growth, the WS obtained 𝞱v values approaching the loam soil at times and slightly less in the case of RS, when the percentage of RC and WS was 30% to the sandy soil volume/volume (v/v). Also the use of mulch of RS showed a noticeable increase in 𝞱v and significant improvement of plant growth to that without mulch. These proven technologies can be used in sandy land targeted for reclamation to reduce water use in agriculture.


CATENA ◽  
1999 ◽  
Vol 36 (1-2) ◽  
pp. 153-164 ◽  
Author(s):  
L Galicia ◽  
J López-Blanco ◽  
A.E Zarco-Arista ◽  
V Filips ◽  
F Garcı́a-Oliva

2013 ◽  
Vol 726-731 ◽  
pp. 3872-3876 ◽  
Author(s):  
Xiao Jun Jin ◽  
Jing Long Fan ◽  
Bo Xu ◽  
Bing Wen Li ◽  
Xin Wen Xu

In order to clarify the influence of saline water irrigation to plant growth and distribution ofsoil water-salt, and providing theoretical basis for sustainable water supply of ecological constructionin desert area, the data of soil water-salt and plant growth was observed at Tarim Desert HighwayShelter-forest Ecological Project No. 17 well. The law of soil water and salt spatial distribution wasanalyzed, and the responses of plant growth to 4 different irrigation amounts were studied by singleelement variance analysis. The results were as follows: the soil water content reaches or is close tosaturation in layer of 100~120cm under the 420mm irrigation water condition; The soil water contentreaches or is close to saturation in layer of 160~180cm under the 233.1mm irrigation water condition;The soil water content reaches or is close to saturation in layer of 180~200cm under the 285.6mm irrigation water condition; The soil water content reaches or is close to saturation in layer of160~180cm under the 201.6mm irrigation water condition. The vertical distribution law of soilssalinity is that the soil salt can enter groundwater after 3 days of irrigation, and be gathered in 0~30cmsoil layer. There were no significant differences except the Tamarix plant height in plant growthindexes among 4 different irrigation quantities treatments.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 74
Author(s):  
Weiwei Cong ◽  
Kaijie Yang ◽  
Feng Wang

Northern hemisphere evergreen needleleaf forest (ENF) contributes a significant fraction of global water exchange but regional transpiration (T) observation in ENF ecosystems is still challenging. Traditional remote sensing techniques and terrestrial biosphere models reproduce the transpiration seasonality with difficulty, and with large uncertainties. Solar-induced chlorophyll fluorescence (SIF) emission from vegetation correlates to photosynthesis at multiple spatial and temporal scales. However, how SIF links to transpiration of evergreen forest during seasonal transition is unclear. Here, we explored the relationship between canopy SIF and T retrieved from ground observation towers in ENF. We also examined the role of meteorological and soil factors on the relationship between SIF and T. A slow decrease of SIF and T with a fast reduction in photosynthetically active radiation (PAR), air temperature, vapor pressure deficit (VPD), soil temperature and soil water content (SWC) were found in the ENF during the fall transition. The correlation between SIF and T at hourly and daily scales varied significantly among different months (Pearson correlation coefficient = 0.29–0.68, p < 0.01). SIF and T were significantly linearly correlated at hourly (R2 = 0.53, p < 0.001) and daily (R2 = 0.67, p < 0.001) timescales in the October. Air temperature and PAR were the major moderating factors for the relationship between SIF and T in the fall transition. Soil water content (SWC) influenced the SIF-T relationship at an hourly scale. Soil temperature and VPD’s effect on the SIF-T relationship was evident at a daily scale. This study can help extend the possibility of constraining ecosystem T by SIF at an unprecedented spatiotemporal resolution during season transitions.


2018 ◽  
Vol 30 (2) ◽  
pp. 215-228
Author(s):  
Ali Sharghi ◽  
Hassanali Naghdi Badi ◽  
Sahebali Bolandnazar ◽  
Ali Mehrafarin ◽  
Mohammad Reza Sarikhani

Abstract Fenugreek (Trigonella foenum-graecum L.) is a valuable medicinal plant, which is widely distributed throughout the world. It has been known that plant growth promoting rhizobacteria (PGPR) have positive effects on the quality and quantity of medicinal plants under different soil water levels. For this reason, a factorial experiment was conducted on the basis of a randomized complete block design (RCBD) to evaluate PGPR effects on the morphophysiological and phytochemical traits of fenugreek under different soil water levels. This study was conducted in two separate experiments: after the six-leaf stage and after the flowering stage. In the experiments, the treatments were plant growth promoting rhizobacteria (PGPR) including the control, Sinorhizobium meliloti, Pseudomonas fluorescens, a combination of S. meliloti and P. fluorescens, and different soil water levels (i.e. 100, 80, 60 and 40% of field capacity (FC) in three replications. The results showed that the highest seed weight per plant was obtained by inoculation with the S. meliloti and P. fluorescens combination at 100% FC after the two developmental stages. The maximum concentrations of nicotinic acid and trigonelline were observed for the combination of S. meliloti and P. fluorescens at the soil water content of 40% FC after the six-leaf stage and for S. meliloti at the soil water content of 40% FC after the flowering stage. The correlation and stepwise regression analyses showed positive effects of PGPR application on the morphophysiological and phytochemical traits of fenugreek plants under different soil water levels.


2019 ◽  
Vol 14 (No. 4) ◽  
pp. 229-239 ◽  
Author(s):  
Xueya Zhou ◽  
Dexin Guan ◽  
Jiabing Wu ◽  
Fenghui Yuan ◽  
Anzhi Wang ◽  
...  

Soil water dynamic is considered an important process for water resource and plantation management in Horqin Sand Land, northern China. In this study, soil water content simulated by the SWMS-2D model was used to systematically analyse soil water dynamics and explore the relationship between soil water and rainfall among micro-landforms (i.e., top, upslope, midslope, toeslope, and bottomland) and 0–200 cm soil depths during the growing season of 2013 and 2015. The results showed that soil water dynamics in 0–20 cm depths were closely linked to rainfall patterns, whereas soil water content in 20–80 cm depths illustrated a slight decline in addition to fluctuations caused by rainfall. At the top position, the soil water content in different ranges of depths (20–40 and 80–200 cm) was near the wilting point, and hence some branches, and even entire plants exhibited diebacks. At the upslope or midslope positions, the soil water content in 20–80 or 80–200 cm depths was higher than at the top position. Soil water content was higher at the toeslope and bottomland positions than at other micro-landforms, and deep caliche layers had a positive feedback effect on shrub establishment. Soil water recharge by rainfall was closely related to rainfall intensity and micro-landforms. Only rainfalls &gt; 20 mm significantly increased water content in &gt; 40 cm soil depths, but deeper water recharge occurred at the toeslope position. A linear equation was fitted to the relationship between soil water and antecedent rainfall, and the slopes and R<sup>2</sup> of the equations were different among micro-landforms and soil depths. The linear equations generally fitted well in 0–20 and 20–40 cm depths at the top, upslope, midslope, and toeslope positions (R<sup>2</sup> value of about 0.60), with soil water in 0–20 cm depths showing greater responses to rainfall (average slope of 0.189). In 20–40 cm depths, the response was larger at the toeslope position, with a slope of 0.137. In 40–80 cm depths, a good linear fit with a slope of 0.041 was only recorded at the toeslope position. This study provides a soil water basis for ecological restoration in similar regions.  


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Andrew K. Evers ◽  
Tyler A. Demers ◽  
Andrew M. Gordon ◽  
Naresh V. Thevathasan

Earthworms may have an influence on the production ofN2O, a greenhouse gas, as a result of the ideal environment contained in their gut and casts for denitrifier bacteria. The objective of this study was to determine the relationship between earthworm (Lumbricus terrestrisL.) population density, soil water content andN2Oemissions in a controlled greenhouse experiment based on population densities (90 to 270 individualsm−2) found at the Guelph Agroforestry Research Station (GARS) from 1997 to 1998. An experiment conducted at considerably higher than normal densities of earthworms revealed a significant relationship between earthworm density, soil water content andN2Oemissions, with mean emissions increasing to 43.5 gha−1day−1at 30 earthworms 0.0333 m−2at 35% soil water content. However, a second experiment, based on the density of earthworms at GARS, found no significant difference inN2Oemissions (5.49 to 6.99 gha−1day−1) aa a result of density and 31% soil water content.


Sign in / Sign up

Export Citation Format

Share Document