scholarly journals The Gegenbauer Wavelets-Based Computational Methods for the Coupled System of Burgers’ Equations with Time-Fractional Derivative

Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 486 ◽  
Author(s):  
Neslihan Ozdemir ◽  
Aydin Secer ◽  
Mustafa Bayram

In this study, Gegenbauer wavelets are used to present two numerical methods for solving the coupled system of Burgers’ equations with a time-fractional derivative. In the presented methods, we combined the operational matrix of fractional integration with the Galerkin method and the collocation method to obtain a numerical solution of the coupled system of Burgers’ equations with a time-fractional derivative. The properties of Gegenbauer wavelets were used to transform this system to a system of nonlinear algebraic equations in the unknown expansion coefficients. The Galerkin method and collocation method were used to find these coefficients. The main aim of this study was to indicate that the Gegenbauer wavelets-based methods is suitable and efficient for the coupled system of Burgers’ equations with time-fractional derivative. The obtained results show the applicability and efficiency of the presented Gegenbaur wavelets-based methods.

Author(s):  
M. H. Heydari

The time fractional subdiffusion equation (FSDE) as a class of anomalous diffusive systems has obtained by replacing the time derivative in ordinary diffusion by a fractional derivative of order 0<α<1. Since analytically solving this problem is often impossible, proposing numerical methods for its solution has practical importance. In this paper, an efficient and accurate Galerkin method based on the Legendre wavelets (LWs) is proposed for solving this equation. The time fractional derivatives are described in the Riemann–Liouville sense. To do this, we first transform the original subdiffusion problem into an equivalent problem with fractional derivatives in the Caputo sense. The LWs and their fractional operational matrix (FOM) of integration together with the Galerkin method are used to transform the problem under consideration into the corresponding linear system of algebraic equations, which can be simply solved to achieve the solution of the problem. The proposed method is very convenient for solving such problems, since the initial and boundary conditions are taken into account, automatically. Furthermore, the efficiency of the proposed method is shown for some concrete examples. The results reveal that the proposed method is very accurate and efficient.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Abdulnasir Isah ◽  
Chang Phang ◽  
Piau Phang

An effective collocation method based on Genocchi operational matrix for solving generalized fractional pantograph equations with initial and boundary conditions is presented. Using the properties of Genocchi polynomials, we derive a new Genocchi delay operational matrix which we used together with the Genocchi operational matrix of fractional derivative to approach the problems. The error upper bound for the Genocchi operational matrix of fractional derivative is also shown. Collocation method based on these operational matrices is applied to reduce the generalized fractional pantograph equations to a system of algebraic equations. The comparison of the numerical results with some existing methods shows that the present method is an excellent mathematical tool for finding the numerical solutions of generalized fractional pantograph equations.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Aydin Secer ◽  
Neslihan Ozdemir

Abstract In this paper, our purpose is to present a wavelet Galerkin method for solving the time-fractional KdV-Burgers-Kuramoto (KBK) equation, which describes nonlinear physical phenomena and involves instability, dissipation, and dispersion parameters. The presented computational method in this paper is based on Gegenbauer wavelets. Gegenbauer wavelets have useful properties. Gegenbauer wavelets and the operational matrix of integration, together with the Galerkin method, were used to transform the time-fractional KBK equation into the corresponding nonlinear system of algebraic equations, which can be solved numerically with Newton’s method. Our aim is to show that the Gegenbauer wavelets-based method is efficient and powerful tool for solving the KBK equation with time-fractional derivative. In order to compare the obtained numerical results of the wavelet Galerkin method with exact solutions, two test problems were chosen. The obtained results prove the performance and efficiency of the presented method.


2019 ◽  
Vol 25 (3) ◽  
pp. 171-182
Author(s):  
Noratiqah Farhana Binti Ismail ◽  
Chang Phang

In this paper, we solve a class of fractional variational problems (FVPs) by using operational matrix of fractional integration which derived from second order spline (B-spline) basis function. The fractional derivative is defined in the Caputo and Riemann-Liouville fractional integral operator. The B-spline function with unknown coefficients and B-spline operational matrix of integration are used to replace the fractional derivative which is in the performance index. Next, we applied the method of constrained extremum which involved a set of Lagrange multipliers. As a result, we get a system of algebraic equations which can be solve easily. Hence, the value for unknown coefficients of B-spline function is obtained as well as the solution for the FVPs. Finally, the illustrative examples shown the validity and applicability of this method to solve FVPs.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
İbrahim Avcı 

In this paper, we consider numerical solutions for a general form of fractional delay differential equations (FDDEs) with fractional derivatives defined in the Caputo sense. A fractional integration operational matrix, created using a fractional Taylor basis, is applied to solve these FDDEs. The main characteristic of this approach is, by utilizing the operational matrix of fractional integration, to reduce the given differential equation to a set of algebraic equations with unknown coefficients. This equation system can be solved efficiently using a computer algorithm. A bound on the error for the best approximation and fractional integration are also given. Several examples are given to illustrate the validity and applicability of the technique. The efficiency of the presented method is revealed by comparing results with some existing solutions, the findings of some other approaches from the literature and by plotting absolute error figures.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 96 ◽  
Author(s):  
İbrahim Avcı ◽  
Nazim I. Mahmudov

In this article, we propose a numerical method based on the fractional Taylor vector for solving multi-term fractional differential equations. The main idea of this method is to reduce the given problems to a set of algebraic equations by utilizing the fractional Taylor operational matrix of fractional integration. This system of equations can be solved efficiently. Some numerical examples are given to demonstrate the accuracy and applicability. The results show that the presented method is efficient and applicable.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 226-230 ◽  
Author(s):  
A. Bolandtalat ◽  
E. Babolian ◽  
H. Jafari

AbstractIn this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.


2003 ◽  
Author(s):  
Jose´ Antunes ◽  
Miguel Moreira ◽  
Philippe Piteau

In this paper we develop a non-linear dynamical solution for finite length bearings and squeeze-film dampers based on a Spectral-Galerkin method. In this approach the gap-averaged pressure is approximated, in the lubrication Reynolds equation, by a truncated double Fourier series. The Galerkin method, applied over the residuals so obtained, generate a set of simultaneous algebraic equations for the time-dependent coefficients of the double Fourier series for the pressure. In order to assert the validity of our 2D–Spectral-Galerkin solution we present some preliminary comparative numerical simulations, which display satisfactory results up to eccentricities of about 0.9 of the reduced fluid gap H/R. The so-called long and short-bearing dynamical solutions of the Reynolds equation, reformulated in Cartesian coordinates, are also presented and compared with the corresponding classic solutions found on literature.


2018 ◽  
Vol 36 (4) ◽  
pp. 33-54 ◽  
Author(s):  
Kourosh Parand ◽  
Mehdi Delkhosh

In this paper, a new approximate method for solving of systems of nonlinear Volterra integro-differential equations of arbitrary (integer and fractional) order is introduced. For this purpose, the generalized fractional order of the Chebyshev orthogonal functions (GFCFs) based on the classical Chebyshev polynomials of the first kind has been introduced that can be used to obtain the solution of the integro-differential equations (IDEs). Also, we construct the fractional derivative operational matrix of order $\alpha$ in the Caputo's definition for GFCFs. This method reduced a system of IDEs by collocation method into a system of algebraic equations. Some examples to illustrate the simplicity and the effectiveness of the propose method have been presented.


Sign in / Sign up

Export Citation Format

Share Document