scholarly journals Lie-Group Modeling and Numerical Simulation of a Helicopter

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2682
Author(s):  
Alessandro Tarsi ◽  
Simone Fiori

Helicopters are extraordinarily complex mechanisms. Such complexity makes it difficult to model, simulate and pilot a helicopter. The present paper proposes a mathematical model of a fantail helicopter type based on Lie-group theory. The present paper first recalls the Lagrange–d’Alembert–Pontryagin principle to describe the dynamics of a multi-part object, and subsequently applies such principle to describe the motion of a helicopter in space. A good part of the paper is devoted to the numerical simulation of the motion of a helicopter, which was obtained through a dedicated numerical method. Numerical simulation was based on a series of values for the many parameters involved in the mathematical model carefully inferred from the available technical literature.

Author(s):  
Oluwafemi Temidayo J. ◽  
Azuaba E. ◽  
Lasisi N. O.

In this study, we analyzed the endemic equilibrium point of a malaria-hygiene mathematical model. We prove that the mathematical model is biological and meaningfully well-posed. We also compute the basic reproduction number using the next generation method. Stability analysis of the endemic equilibrium point show that the point is locally stable if reproduction number is greater that unity and globally stable by the Lasalle’s invariant principle. Numerical simulation to show the dynamics of the compartment at various hygiene rate was carried out.


Author(s):  
Yu Zhao ◽  
Yingying Wang ◽  
Liwei Li ◽  
Chao Yang ◽  
Yang Du ◽  
...  

The sheave installation method (SIM) is an effective and non-conventional method to solve the installation of subsea equipment in deep water (>1000m), which has been developed to deploy the 175t Roncador Manifold I into 1,885 meters water depth in 2002. With the weight increment of subsea cluster manifold, how to solve its installation with the high reliability in the deep sea is still a great challenge. In this paper, the installation of the 300t subsea cluster manifold using the SIM is studied in the two-dimensional coordinate system. The mathematical model is established and the lumped mass method is used to calculate the hydrodynamic forces of the wireropes. Taking into account the complex environment loads, the numerical simulation of the lowering process is carried out by OrcaFlex. The displacement and vibration of the subsea cluster manifold in the z-axis direction and the effective tension at the top of the wireropes can be gotten, which can provide guidance for the installation of the cluster manifold in the South China Sea.


2017 ◽  
Vol 29 (2) ◽  
pp. 394-422 ◽  
Author(s):  
Marta Favali ◽  
Giovanna Citti ◽  
Alessandro Sarti

This letter presents a mathematical model of figure-ground articulation that takes into account both local and global gestalt laws and is compatible with the functional architecture of the primary visual cortex (V1). The local gestalt law of good continuation is described by means of suitable connectivity kernels that are derived from Lie group theory and quantitatively compared with long-range connectivity in V1. Global gestalt constraints are then introduced in terms of spectral analysis of a connectivity matrix derived from these kernels. This analysis performs grouping of local features and individuates perceptual units with the highest salience. Numerical simulations are performed, and results are obtained by applying the technique to a number of stimuli.


2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .


2021 ◽  
Vol 2090 (1) ◽  
pp. 012049
Author(s):  
N V Kovalenko ◽  
A V Smirnov ◽  
O A Ryabushkin

Abstract The mathematical model that describes the local heating of biological tissues by optical radiation is introduced. Changes of the electric properties of biological tissues in such process can be used as a reliable tool for analyzing heating and damage degrees of tissues.


2020 ◽  
pp. 442-451
Author(s):  
А.V. Batig ◽  
A. Ya. Kuzyshyn

One of the most important problems that pose a serious threat to the functioning of railways is the problem of freight cars derailment. However, according to statistics, the number of cases of the derailments of freight cars in trains annually grows. Тo prevent such cases, the necessary preventive measures are developed, and to study the causes of their occurrence, a significant number of mathematical models, programs and software systems created by leading domestic and foreign scientists. Studies of such mathematical models by the authors of this work have led to the conclusion that they are not sufficiently detailed to the extent that it is necessary for analyze the reasons of its derailment. At the same time, an analysis of the causes of the rolling stock derailments on the railways of Ukraine over the past five years showed that in about 20 % of cases they are obvious, and in 7 % of cases they are not obvious and implicitly expressed. The study of such cases of rolling stock derailment during an official investigation by the railway and during forensic railway transport expertises requires the use of an improved mathematical model of a freight car, which would allow a quantitative assessment of the impact of its parameters and rail track on the conditions of railway accidents. Therefore, taking into account the main reasons that caused the occurrence of such railroad accidents over the last five years on the railways of Ukraine, the article selected the main directions for improving the mathematical model of a freight car, allowing to cover all the many factors (explicit and hidden) and identify the most significant ones regarding the circumstances of the derailment rolling stock off the track, established on the basis of a computer experiment. It is proposed in the mathematical model of a freight car to take into account the guiding force, the value of which is one of the main indicators of the stability of the rolling stock. The authors of the article noted that not taking into account the influence of the guiding forces on the dynamics of the freight car can lead to an erroneous determination of the reasons for the rolling stock derailment or even to the impossibility of establishing them.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Qixin Zhu ◽  
Hongli Liu ◽  
Yiyi Yin ◽  
Lei Xiong ◽  
Yonghong Zhu

Mechanical resonance is one of the most pervasive problems in servo control. Closed-loop simulations are requisite when the servo control system with high accuracy is designed. The mathematical model of resonance mode must be considered when the closed-loop simulations of servo systems are done. There will be a big difference between the simulation results and the real actualities of servo systems when the resonance mode is not considered in simulations. Firstly, the mathematical model of resonance mode is introduced in this paper. This model can be perceived as a product of a differentiation element and an oscillating element. Secondly, the second-order differentiation element is proposed to simulate the resonant part and the oscillating element is proposed to simulate the antiresonant part. Thirdly, the simulation approach for two resonance modes in servo systems is proposed. Similarly, this approach can be extended to the simulation of three or even more resonances in servo systems. Finally, two numerical simulation examples are given.


2009 ◽  
Vol 4 (2) ◽  
pp. 13-18
Author(s):  
Igor Anufriev ◽  
Aleksandr Golovanov ◽  
Aleksandr Tsimbalyuk ◽  
Oleg Sharypov

Current work covers experimental and theoretical investigation of conic confusers impact on the intensity shock wave, generated in the shock tube by explosion of gunpowder charge. For given conditions optimal geometric characteristics of the confuser, providing maximal pressure in the shock wave front, were found experimentally. The mathematical model was developed and numerical simulation of the axisymmetric shock-wave gas flow in the channel was carried out. Experimentally was shown, that the application of the optimal confuser provides significant increase of the efficiency gasdynamic effect on the combustion of forest combustible materials.


2016 ◽  
Vol 56 (1) ◽  
pp. 1
Author(s):  
Youwei Dong ◽  
Ahmed Rahmani

In this paper the formation control of a multi-robots system is investigated. The proposed control law, based on Lie group theory, is applied to control the formation of a group of unicycle-type robots. The communication topology is supposed to be a rooted directed acyclic graph and fixed. Some numerical simulations using Matlab are made to validate our results.


Sign in / Sign up

Export Citation Format

Share Document