scholarly journals An Astrocyte-Flow Mapping on a Mesh-Based Communication Infrastructure to Defective Neurons Phagocytosis

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3012
Author(s):  
Amir Masoud Rahmani ◽  
Rizwan Ali Naqvi ◽  
Saqib Ali ◽  
Seyedeh Yasaman Hosseini Mirmahaleh ◽  
Mohammed Alswaitti ◽  
...  

In deploying the Internet of Things (IoT) and Internet of Medical Things (IoMT)-based applications and infrastructures, the researchers faced many sensors and their output’s values, which have transferred between service requesters and servers. Some case studies addressed the different methods and technologies, including machine learning algorithms, deep learning accelerators, Processing-In-Memory (PIM), and neuromorphic computing (NC) approaches to support the data processing complexity and communication between IoMT nodes. With inspiring human brain structure, some researchers tackled the challenges of rising IoT- and IoMT-based applications and neural structures’ simulation. A defective device has destructive effects on the performance and cost of the applications, and their detection is challenging for a communication infrastructure with many devices. We inspired astrocyte cells to map the flow (AFM) of the Internet of Medical Things onto mesh network processing elements (PEs), and detect the defective devices based on a phagocytosis model. This study focuses on an astrocyte’s cholesterol distribution into neurons and presents an algorithm that utilizes its pattern to distribute IoMT’s dataflow and detect the defective devices. We researched Alzheimer’s symptoms to understand astrocyte and phagocytosis functions against the disease and employ the vaccination COVID-19 dataset to define a set of task graphs. The study improves total runtime and energy by approximately 60.85% and 52.38% after implementing AFM, compared with before astrocyte-flow mapping, which helps IoMT’s infrastructure developers to provide healthcare services to the requesters with minimal cost and high accuracy.

Telecom IT ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 50-55
Author(s):  
D. Saharov ◽  
D. Kozlov

The article deals with the СoAP Protocol that regulates the transmission and reception of information traf-fic by terminal devices in IoT networks. The article describes a model for detecting abnormal traffic in 5G/IoT networks using machine learning algorithms, as well as the main methods for solving this prob-lem. The relevance of the article is due to the wide spread of the Internet of things and the upcoming update of mobile networks to the 5g generation.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Bikash Pradhan ◽  
Saugat Bhattacharyya ◽  
Kunal Pal

The last decade has witnessed extensive research in the field of healthcare services and their technological upgradation. To be more specific, the Internet of Things (IoT) has shown potential application in connecting various medical devices, sensors, and healthcare professionals to provide quality medical services in a remote location. This has improved patient safety, reduced healthcare costs, enhanced the accessibility of healthcare services, and increased operational efficiency in the healthcare industry. The current study gives an up-to-date summary of the potential healthcare applications of IoT- (HIoT-) based technologies. Herein, the advancement of the application of the HIoT has been reported from the perspective of enabling technologies, healthcare services, and applications in solving various healthcare issues. Moreover, potential challenges and issues in the HIoT system are also discussed. In sum, the current study provides a comprehensive source of information regarding the different fields of application of HIoT intending to help future researchers, who have the interest to work and make advancements in the field to gain insight into the topic.


The advancement of information and communications technology has changed an IoMT-enabled healthcare system. The Internet of Medical Things (IoMT) is a subset of the Internet of Things (IoT) that focuses on smart healthcare (medical) device connectivity. While the Internet of Medical Things (IoMT) communication environment facilitates and supports our daily health activities, it also has drawbacks such as password guessing, replay, impersonation, remote hijacking, privileged insider, denial of service (DoS), and man-in-the-middle attacks, as well as malware attacks. Malware botnets cause assaults on the system's data and other resources, compromising its authenticity, availability, confidentiality and, integrity. In the event of such an attack, crucial IoMT communication data may be exposed, altered, or even unavailable to authorised users. As a result, malware protection for the IoMT environment becomes critical. In this paper, we provide several forms of malware attacks and their consequences. We also go through security, privacy, and different IoMT malware detection schemes


Author(s):  
Itamir Barroca ◽  
Gibeon Aquino ◽  
Maria Alzete Lima

The high cost of healthcare services, the aging population and the increase of chronic disease is becoming a global concern. Several studies have indicated the need to minimize the process of hospitalization and the high cost of patient care. A promising trend in healthcare is to move the routines of medical checks from a hospital to the patient's home. Moreover, recent advances in microelectronics have boosted the advent of a revolutionary model involving systems and communication technology. This new paradigm, the Internet of Things (IoT), has a broad applicability in several areas, including healthcare. Based on this context, this chapter aims to describe a computer platform based on IoT for the remote monitoring of patients in critical condition. Furthermore, it is planned to approach the current advances and challenges of conceiving and developing a set of technology-centric, targeting issues relevant to underdeveloped countries, particularly in regards to Brazil's health infrastructure.


2021 ◽  
pp. 307-327
Author(s):  
Mohammed H. Alsharif ◽  
Anabi Hilary Kelechi ◽  
Imran Khan ◽  
Mahmoud A. Albreem ◽  
Abu Jahid ◽  
...  

2019 ◽  
Vol 7 (2) ◽  
pp. 21-40 ◽  
Author(s):  
Parthasarathy Panchatcharam ◽  
Vivekanandan S.

Wellbeing is fundament requirement. What's more, it is human appropriate to get quality health care. These days, India is confronting numerous medical problems in light of fewer assets. This survey article displays the idea of solving health issues by utilizing a recent innovation, the Internet of Things (IOT). The Internet of Things with their developing interdisciplinary applications has changed our lives. Smart health care being one such IoT application interfaces brilliant gadgets, machines, patients, specialists, and sensors to the web. At long last, the difficulties and prospects of the improvement of IoT-based medicinal service frameworks are talked about in detail. This review additionally summarizes the security and protection worries of IoT, administrations and application of IoT and smart healthcare services that have changed the customary medicinal services framework by making healthcare administration more proficient through their applications.


Author(s):  
Nelson Matthys ◽  
Fan Yang ◽  
Wilfried Daniels ◽  
Sam Michiels ◽  
Wouter Joosen ◽  
...  

2021 ◽  
Author(s):  
Jehad Ali ◽  
Byeong-hee Roh

Separating data and control planes by Software-Defined Networking (SDN) not only handles networks centrally and smartly. However, through implementing innovative protocols by centralized controllers, it also contributes flexibility to computer networks. The Internet-of-Things (IoT) and the implementation of 5G have increased the number of heterogeneous connected devices, creating a huge amount of data. Hence, the incorporation of Artificial Intelligence (AI) and Machine Learning is significant. Thanks to SDN controllers, which are programmable and versatile enough to incorporate machine learning algorithms to handle the underlying networks while keeping the network abstracted from controller applications. In this chapter, a software-defined networking management system powered by AI (SDNMS-PAI) is proposed for end-to-end (E2E) heterogeneous networks. By applying artificial intelligence to the controller, we will demonstrate this regarding E2E resource management. SDNMS-PAI provides an architecture with a global view of the underlying network and manages the E2E heterogeneous networks with AI learning.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Omid Akbarzadeh ◽  
Mehrshid Baradaran ◽  
Mohammad R. Khosravi

The paper aims to design and develop an innovative solution in the Smart Building context that increases guests’ hospitality level during the COVID-19 and future pandemics in locations like hotels, conference locations, campuses, and hospitals. The solution supports features intending to control the number of occupants by online appointments, smart navigation, and queue management in the building through mobile phones and navigation to the desired location by highlighting interests and facilities. Moreover, checking the space occupancy, and automatic adjustment of the environmental features are the abilities that can be added to the proposed design in the future development. The proposed solution can address all mentioned issues regarding the smart building by integrating and utilizing various data sources collected by the internet of things (IoT) sensors. Then, storing and processing collected data in servers and finally sending the desired information to the end-users. Consequently, through the integration of multiple IoT technologies, a unique platform with minimal hardware usage and maximum adaptability for smart management of general and healthcare services in hospital buildings will be created.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1809-1812

The significance of Internet of Things (IoT) makes different objects connected and it has also been known as the tech revolution. One of the many applications of IoT is in healthcare to examine the patient’s health report, internet of things makes medical technology more efficient and less complicated by giving access to real-time analysis of the patient’s health, in which it focuses on acquiring the data regarding the patient’s health and eliminate the possible human flaws. In the internet of things, a patient’s health statistics get transmitted through various medical equipment through a gateway, where they are stored and monitored. The main challenges in the implementation of the internet of things for healthcare services are checking all patients from different places. Therefore, the internet of things in the healthcare field gives the basic solutions for effective patient monitoring at less cost and also reduces the tensions between patient outcomes and disease management. This paper gives emphases on the different techniques used to monitor the patients while working for the healthcare department.


Sign in / Sign up

Export Citation Format

Share Document