scholarly journals Evolutionary Algorithms Enhanced with Quadratic Coding and Sensing Search for Global Optimization

2020 ◽  
Vol 25 (1) ◽  
pp. 7 ◽  
Author(s):  
Abdel-Rahman Hedar ◽  
Wael Deabes ◽  
Majid Almaraashi ◽  
Hesham H. Amin

Enhancing Evolutionary Algorithms (EAs) using mathematical elements significantly contribute to their development and control the randomness they are experiencing. Moreover, the automation of the primary process steps of EAs is still one of the hardest problems. Specifically, EAs still have no robust automatic termination criteria. Moreover, the highly random behavior of some evolutionary operations should be controlled, and the methods should invoke advanced learning process and elements. As follows, this research focuses on the problem of automating and controlling the search process of EAs by using sensing and mathematical mechanisms. These mechanisms can provide the search process with the needed memories and conditions to adapt to the diversification and intensification opportunities. Moreover, a new quadratic coding and quadratic search operator are invoked to increase the local search improving possibilities. The suggested quadratic search operator uses both regression and Radial Basis Function (RBF) neural network models. Two evolutionary-based methods are proposed to evaluate the performance of the suggested enhancing elements using genetic algorithms and evolution strategies. Results show that for both the regression, RBFs and quadratic techniques could help in the approximation of high-dimensional functions with the use of a few adjustable parameters for each type of function. Moreover, the automatic termination criteria could allow the search process to stop appropriately.

Author(s):  
Lean Yu ◽  
Shouyang Wang

In this study, a multistage confidence-based radial basis function (RBF) neural network ensemble learning model is proposed to design a reliable delinquent prediction system for credit risk management. In the first stage, a bagging sampling approach is used to generate different training datasets. In the second stage, the RBF neural network models are trained using various training datasets from the previous stage. In the third stage, the trained RBF neural network models are applied to the testing dataset and some prediction results and confidence values can be obtained. In the fourth stage, the confidence values are scaled into a unit interval by logistic transformation. In the final stage, the multiple different RBF neural network models are fused to obtain the final prediction results by means of confidence measure. For illustration purpose, two publicly available credit datasets are used to verify the effectiveness of the proposed confidence-based RBF neural network ensemble learning paradigm.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jincai Chang ◽  
Qiuling Pan ◽  
Zhihao Shen ◽  
Hao Qin

In a refrigeration unit, the amount of refrigerant has a substantial influence on the entire refrigeration system. To predict the amount of refrigerant in refrigerators with the best performance, this study used refrigerator data collected in real time via the Internet of Things, which were screened to include only the effective parameters related to the compressor and refrigeration properties (based on their practical significance and the research background) and cleaned by applying longitudinal dimensionality reduction and transverse dimensionality reduction. Then, on the basis of an idealized model for refrigerator data, a model of the relationships between refrigerant amount (the dependent variable) and temperature variation, refrigerator compartment temperature, freezer temperature, and other relevant parameters (independent variables) was established. A refrigeration model based on a neural network was then established for predicting the amount of refrigerant and was used to predict five unknown amounts of refrigerant from data sets. BP neural network and RBF neural network models were used to compare the prediction results and analyze the loss functions. From the results, it was concluded that the unknown amount of refrigerant was most likely to be 32.5 g. It is of great practical significance for refrigerator production and maintenance to study the prediction of the amount of refrigerant remaining in a refrigerator.


2013 ◽  
Vol 6 (12) ◽  
pp. 2171-2180
Author(s):  
Hamed Pouralikhani ◽  
Alimohammad Kimiagari ◽  
Mohsen Keyvanloo ◽  
Hesamaddin Najmi

Nanophotonics ◽  
2017 ◽  
Vol 6 (3) ◽  
pp. 561-576 ◽  
Author(s):  
Guy Van der Sande ◽  
Daniel Brunner ◽  
Miguel C. Soriano

AbstractWe review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.


2012 ◽  
Vol 23 (3) ◽  
pp. 40-46 ◽  
Author(s):  
Olanrewaju A. Oludolapo ◽  
Jimoh A. Adisa ◽  
Kholopane A. Pule

In view of the close association between energy and economic growth, South Africa’s aspirations for higher growth, more energy is required; formulating a long-term economic development plan and implementing an energy strategy for a country /industry necessitates establishing the correct relationship between energy and the economy. As insufficient energy or a lack thereof is reported to be a major cause of social and economic poverty, it is very important to select a model to forecast the consumption of energy reasonably accurately. This study presents techniques based on the development of multilayer perceptron (MLP) and radial basis function (RBF) of artificial neural network (ANN) models, for calculating the energy consumption of South Africa’s industrial sector between 1993 and 2000. The approach examines the energy consumption in relation to the gross domestic product. The results indicate a strong agreement between model predictions and observed values, since the mean absolute percentage error is below 5%. When performance indices are compared, the RBF-based model is a more accurate predictor than the MLP model.


Sign in / Sign up

Export Citation Format

Share Document