scholarly journals A Multi-Omics Characterization of the Natural Product Potential of Tropical Filamentous Marine Cyanobacteria

Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 20
Author(s):  
Tiago Leão ◽  
Mingxun Wang ◽  
Nathan Moss ◽  
Ricardo da Silva ◽  
Jon Sanders ◽  
...  

Microbial natural products are important for the understanding of microbial interactions, chemical defense and communication, and have also served as an inspirational source for numerous pharmaceutical drugs. Tropical marine cyanobacteria have been highlighted as a great source of new natural products, however, few reports have appeared wherein a multi-omics approach has been used to study their natural products potential (i.e., reports are often focused on an individual natural product and its biosynthesis). This study focuses on describing the natural product genetic potential as well as the expressed natural product molecules in benthic tropical cyanobacteria. We collected from several sites around the world and sequenced the genomes of 24 tropical filamentous marine cyanobacteria. The informatics program antiSMASH was used to annotate the major classes of gene clusters. BiG-SCAPE phylum-wide analysis revealed the most promising strains for natural product discovery among these cyanobacteria. LCMS/MS-based metabolomics highlighted the most abundant molecules and molecular classes among 10 of these marine cyanobacterial samples. We observed that despite many genes encoding for peptidic natural products, peptides were not as abundant as lipids and lipopeptides in the chemical extracts. Our results highlight a number of highly interesting biosynthetic gene clusters for genome mining among these cyanobacterial samples.

mSystems ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Daniela B. B. Trivella ◽  
Rafael de Felicio

ABSTRACT Natural products are the richest source of chemical compounds for drug discovery. Particularly, bacterial secondary metabolites are in the spotlight due to advances in genome sequencing and mining, as well as for the potential of biosynthetic pathway manipulation to awake silent (cryptic) gene clusters under laboratory cultivation. Further progress in compound detection, such as the development of the tandem mass spectrometry (MS/MS) molecular networking approach, has contributed to the discovery of novel bacterial natural products. The latter can be applied directly to bacterial crude extracts for identifying and dereplicating known compounds, therefore assisting the prioritization of extracts containing novel natural products, for example. In our opinion, these three approaches—genome mining, silent pathway induction, and MS-based molecular networking—compose the tripod for modern bacterial natural product discovery and will be discussed in this perspective.


2016 ◽  
Vol 69 (2) ◽  
pp. 129 ◽  
Author(s):  
John A. Kalaitzis ◽  
Shane D. Ingrey ◽  
Rocky Chau ◽  
Yvette Simon ◽  
Brett A. Neilan

Historically microbial natural product biosynthesis pathways were elucidated mainly by isotope labelled precursor directed feeding studies. Now the genetics underpinning the assembly of microbial natural products biosynthesis is so well understood that some pathways and their products can be predicted from DNA sequences alone. The association between microbial natural products and their biosynthesis gene clusters is now driving the field of ‘genetics guided natural product discovery’. This account overviews our research into cyanotoxin biosynthesis before the genome sequencing era through to some recent discoveries resulting from the mining of Australian biota for natural product biosynthesis pathways.


PLoS Biology ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. e3001026
Author(s):  
Alexander M. Kloosterman ◽  
Peter Cimermancic ◽  
Somayah S. Elsayed ◽  
Chao Du ◽  
Michalis Hadjithomas ◽  
...  

Microbial natural products constitute a wide variety of chemical compounds, many which can have antibiotic, antiviral, or anticancer properties that make them interesting for clinical purposes. Natural product classes include polyketides (PKs), nonribosomal peptides (NRPs), and ribosomally synthesized and post-translationally modified peptides (RiPPs). While variants of biosynthetic gene clusters (BGCs) for known classes of natural products are easy to identify in genome sequences, BGCs for new compound classes escape attention. In particular, evidence is accumulating that for RiPPs, subclasses known thus far may only represent the tip of an iceberg. Here, we present decRiPPter (Data-driven Exploratory Class-independent RiPP TrackER), a RiPP genome mining algorithm aimed at the discovery of novel RiPP classes. DecRiPPter combines a Support Vector Machine (SVM) that identifies candidate RiPP precursors with pan-genomic analyses to identify which of these are encoded within operon-like structures that are part of the accessory genome of a genus. Subsequently, it prioritizes such regions based on the presence of new enzymology and based on patterns of gene cluster and precursor peptide conservation across species. We then applied decRiPPter to mine 1,295 Streptomyces genomes, which led to the identification of 42 new candidate RiPP families that could not be found by existing programs. One of these was studied further and elucidated as a representative of a novel subfamily of lanthipeptides, which we designate class V. The 2D structure of the new RiPP, which we name pristinin A3 (1), was solved using nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS) data, and chemical labeling. Two previously unidentified modifying enzymes are proposed to create the hallmark lanthionine bridges. Taken together, our work highlights how novel natural product families can be discovered by methods going beyond sequence similarity searches to integrate multiple pathway discovery criteria.


2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Brett C. Covington ◽  
Fei Xu ◽  
Mohammad R. Seyedsayamdost

Microbial natural products have provided an important source of therapeutic leads and motivated research and innovation in diverse scientific disciplines. In recent years, it has become evident that bacteria harbor a large, hidden reservoir of potential natural products in the form of silent or cryptic biosynthetic gene clusters (BGCs). These can be readily identified in microbial genome sequences but do not give rise to detectable levels of a natural product. Herein, we provide a useful organizational framework for the various methods that have been implemented for interrogating silent BGCs. We divide all available approaches into four categories. The first three are endogenous strategies that utilize the native host in conjunction with classical genetics, chemical genetics, or different culture modalities. The last category comprises expression of the entire BGC in a heterologous host. For each category, we describe the rationale, recent applications, and associated advantages and limitations. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2019 ◽  
Author(s):  
Asif Fazal ◽  
Divya Thankachan ◽  
Ellie Harris ◽  
Ryan F. Seipke

AbstractCloning natural product biosynthetic gene clusters from cultured or uncultured sources and their subsequent expression by genetically tractable heterologous hosts is an essential strategy for the elucidation and characterisation of novel microbial natural products. The availability of suitable expression hosts is a critical aspect of this workflow. In this work, we mutagenised five endogenous biosynthetic gene clusters from Streptomyces albus S4, which reduced the complexity of chemical extracts generated from the strain and eliminated antifungal and antibacterial bioactivity. We showed that the resulting quintuple mutant can express foreign BGCs by heterologously producing actinorhodin, cinnamycin and prunustatin. We envisage that our strain will be a useful addition to the growing suite of heterologous expression hosts available for exploring microbial secondary metabolism.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 142 ◽  
Author(s):  
Max Crüsemann

Bacterial natural products possess potent bioactivities and high structural diversity and are typically encoded in biosynthetic gene clusters. Traditional natural product discovery approaches rely on UV- and bioassay-guided fractionation and are limited in terms of dereplication. Recent advances in mass spectrometry, sequencing and bioinformatics have led to large-scale accumulation of genomic and mass spectral data that is increasingly used for signature-based or correlation-based mass spectrometry genome mining approaches that enable rapid linking of metabolomic and genomic information to accelerate and rationalize natural product discovery. In this mini-review, these approaches are presented, and discovery examples provided. Finally, future opportunities and challenges for paired omics-based natural products discovery workflows are discussed.


2008 ◽  
Vol 105 (40) ◽  
pp. 15311-15316 ◽  
Author(s):  
Eric J. Dimise ◽  
Paul F. Widboom ◽  
Steven D. Bruner

Bacteria belonging to the order Actinomycetales have proven to be an important source of biologically active and often therapeutically useful natural products. The characterization of orphan biosynthetic gene clusters is an emerging and valuable approach to the discovery of novel small molecules. Analysis of the recently sequenced genome of the thermophilic actinomyceteThermobifida fuscarevealed an orphan nonribosomal peptide biosynthetic gene cluster coding for an unknown siderophore natural product.T. fuscais a model organism for the study of thermostable cellulases and is a major degrader of plant cell walls. Here, we report the isolation and structure elucidation of the fuscachelins, siderophore natural products produced byT. fusca. In addition, we report the purification and biochemical characterization of the termination module of the nonribosomal peptide synthetase. Biochemical analysis of adenylation domain specificity supports the assignment of this gene cluster as the producer of the fuscachelin siderophores. The proposed nonribosomal peptide biosynthetic pathway exhibits several atypical features, including a macrocyclizing thioesterase that produces a 10-membered cyclic depsipeptide and a nonlinear assembly line, resulting in the unique heterodimeric architecture of the siderophore natural product.


2020 ◽  
Author(s):  
Rafael Popin ◽  
Danillo Alvarenga ◽  
Raquel Castelo-Branco ◽  
David Fewer ◽  
Kaarina Sivonen

Abstract Background Microbial natural products have unique chemical structures and diverse biological activities. Cyanobacteria commonly possess a wide range of biosynthetic gene clusters to produce natural products. Several studies have mapped the distribution of natural product biosynthetic gene clusters in cyanobacterial genomes. However, little attention has been paid to natural product biosynthesis in plasmids. Some genes encoding cyanobacterial natural product biosynthetic pathways are believed to be dispersed by plasmids through horizontal gene transfer. Thus, we examined complete cyanobacterial genomes to assess if plasmids are involved in the production and dissemination of natural products by cyanobacteria.Results The 185 analyzed genomes possessed 1 to 42 gene clusters and an average of 10. In total, 1816 biosynthetic gene clusters were found. Approximately 95% of these clusters were present in chromosomes. The remaining 5% were present in plasmids, from which homologs of the biosynthetic pathways for aeruginosin, anabaenopeptin, ambiguine, cryptophycin, hassallidin, geosmin, and microcystin were manually curated. The cryptophycin pathway was previously described as active while the other gene cluster include all genes for biosynthesis. Approximately 12% of the 424 analyzed cyanobacterial plasmids contained homologs of genes involved in conjugation. Large plasmids, previously named as “chromids”, were also observed to be widespread in cyanobacteria. Sixteen cryptic natural product biosynthetic gene clusters and geosmin biosynthetic gene clusters were located in those mobile plasmids.Conclusion Homologues of genes involved in the production of toxins, protease inhibitors, odorous compounds, antimicrobials, antitumorals, and other unidentified natural products are located in cyanobacterial plasmids. Some of these plasmids are predicted to be conjugative. The present study provides in silico evidence that plasmids are involved in the distribution of natural product biosynthetic pathways in cyanobacteria.


Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 785
Author(s):  
Junyang Wang ◽  
Jens Nielsen ◽  
Zihe Liu

A wide variety of bacteria, fungi and plants can produce bioactive secondary metabolites, which are often referred to as natural products. With the rapid development of DNA sequencing technology and bioinformatics, a large number of putative biosynthetic gene clusters have been reported. However, only a limited number of natural products have been discovered, as most biosynthetic gene clusters are not expressed or are expressed at extremely low levels under conventional laboratory conditions. With the rapid development of synthetic biology, advanced genome mining and engineering strategies have been reported and they provide new opportunities for discovery of natural products. This review discusses advances in recent years that can accelerate the design, build, test, and learn (DBTL) cycle of natural product discovery, and prospects trends and key challenges for future research directions.


2019 ◽  
Vol 113 (4) ◽  
pp. 511-520 ◽  
Author(s):  
Asif Fazal ◽  
Divya Thankachan ◽  
Ellie Harris ◽  
Ryan F. Seipke

AbstractCloning natural product biosynthetic gene clusters from cultured or uncultured sources and their subsequent expression by genetically tractable heterologous hosts is an essential strategy for the elucidation and characterisation of novel microbial natural products. The availability of suitable expression hosts is a critical aspect of this workflow. In this work, we mutagenised five endogenous biosynthetic gene clusters from Streptomyces albus S4, which reduced the complexity of chemical extracts generated from the strain and eliminated antifungal and antibacterial bioactivity. We showed that the resulting quintuple mutant can express foreign biosynthetic gene clusters by heterologously producing actinorhodin, cinnamycin and prunustatin. We envisage that our strain will be a useful addition to the growing suite of heterologous expression hosts available for exploring microbial secondary metabolism.


Sign in / Sign up

Export Citation Format

Share Document