scholarly journals Overview of Current Targeted Anti-Cancer Drugs for Therapy in Onco-Hematology

Medicina ◽  
2019 ◽  
Vol 55 (8) ◽  
pp. 414 ◽  
Author(s):  
Crisci ◽  
Amitrano ◽  
Saggese ◽  
Muto ◽  
Sarno ◽  
...  

The upgraded knowledge of tumor biology and microenviroment provides information on differences in neoplastic and normal cells. Thus, the need to target these differences led to the development of novel molecules (targeted therapy) active against the neoplastic cells’ inner workings. There are several types of targeted agents, including Small Molecules Inhibitors (SMIs), monoclonal antibodies (mAbs), interfering RNA (iRNA) molecules and microRNA. In the clinical practice, these new medicines generate a multilayered step in pharmacokinetics (PK), which encompasses a broad individual PK variability, and unpredictable outcomes according to the pharmacogenetics (PG) profile of the patient (e.g., cytochrome P450 enzyme), and to patient characteristics such as adherence to treatment and environmental factors. This review focuses on the use of targeted agents in-human phase I/II/III clinical trials in cancer-hematology. Thus, it outlines the up-to-date anticancer drugs suitable for targeted therapies and the most recent finding in pharmacogenomics related to drug response. Besides, a summary assessment of the genotyping costs has been discussed. Targeted therapy seems to be an effective and less toxic therapeutic approach in onco-hematology. The identification of individual PG profile should be a new resource for oncologists to make treatment decisions for the patients to minimize the toxicity and or inefficacy of therapy. This could allow the clinicians to evaluate benefits and restrictions, regarding costs and applicability, of the most suitable pharmacological approach for performing a tailor-made therapy.

2018 ◽  
Vol 18 (5) ◽  
pp. 499-511 ◽  
Author(s):  
Raffaele Di Francia ◽  
Angela De Monaco ◽  
Mariangela Saggese ◽  
Giancarla Iaccarino ◽  
Stefania Crisci ◽  
...  

Background: Drugs for targeted therapies are primarily Small Molecules Inhibitors (SMIs), monoclonal antibodies (mAbs), interfering RNA molecules and microRNA. The use of these new agents generates a multifaceted step in the pharmacokinetics (PK) of these drugs. Individual PK variability is often large, and unpredictability observed in the response to the pharmacogenetic profile of the patient (e.g. cytochome P450 enzyme), patient characteristics such as adherence to treatment and environmental factors. Objective: This review aims to overview the latest anticancer drugs eligible for targeted therapies and the most recent finding in pharmacogenomics related to toxicity/resistance of either individual gene polymorphisms or acquired mutation in a cancer cell. In addition, an early outline evaluation of the genotyping costs and methods has been taken into consideration. Future Outlook: To date, therapeutic drug monitoring (TDM) of mAbs and SMIs is not yet supported by heavy scientific evidence. Extensive effort should be made for targeted therapies to better define concentration-effect relationships and to perform comparative randomized trials of classic dosing versus PK-guided adaptive dosing. The detection of individual pharmacogenomics profile could be the key for the oncologists that will have new resources to make treatment decisions for their patients in order to maximize the benefit and minimize the toxicity. Based on this purpose, the clinician should evaluate advantages and limitations, in terms of costs and applicability, of the most appropriate pharmacological approach to performing a tailored therapy.


2017 ◽  
Vol 6 (03) ◽  
pp. 5297
Author(s):  
Vedangi Aaren* ◽  
Godi Sudhakar ◽  
Girinadh L.R.S.

In both developed and developing countries, overuse of alcohol is a considered as the major cause of acute and chronic pancreatitis. Prolonged overconsumption of alcohol for 5–10 years typically precedes the initial attack of acute alcoholic pancreatitis. It is observed that only a minority (around 5%) of alcoholics develop pancreatitis. It is now established that the pancreas has the capacity to metabolize ethanol. Previous studies have shown that there are two major pathways of ethanol metabolism, oxidative and non-oxidative. Oxidative ethanol metabolism involves the conversion of ethanol to acetaldehyde, a reaction that is catalysed by aldehyde dehydrogenase (ADH) with contributions from cytochrome P450 enzyme (CYP2E1) and possibly also catalase. Genetic factors regulating alcohol metabolism could predispose in developing alcoholic pancreatitis (AP). We investigated the association of polymorphisms in ADH enzymes with the alcoholic pancreatitis in North coastal Andhra Pradesh. Patients with alcoholic pancreatitis (AP; n = 100), alcoholic controls (AC; n = 100), and healthy controls (HC; n = 100) were included in the study. Blood samples were collected from the subjects in EDTA coated vials. DNA was extracted and genotyping for ADH2 and ADH3 was done by PCR-RFLP (polymerase chain reaction restriction fragment length polymorphism). The products were analysed by gel electrophoresis. The frequency distribution of ADH3*1/*1 genotype was significantly higher in AP group (54%) compared with AC (35%), and HC (42%), and was found to be associated with increased risk of alcoholic pancreatitis. There was no statistically significant difference between the frequency distribution of ADH3*1/*1, ADH3*1/*2, and ADH3*2/*2 genotypes between AC and HC. There was no statistically significant difference between the frequency distribution of ADH2*1/*1, ADH2*1/*2, and ADH2*2/*2 genotypes in AP compared with AC and HC. This study shows that carriers of ADH3*1/*1 individuals consuming alcohol are at higher risk for alcoholic pancreatitis than those with other genotypes such as ADH3*1/*2 and ADH3*2/*2. 


Author(s):  
E. Heinonen ◽  
M. Blennow ◽  
M. Blomdahl-Wetterholm ◽  
M. Hovstadius ◽  
J. Nasiell ◽  
...  

Abstract Purpose Sertraline, a selective serotonin reuptake inhibitor (SSRI), is one of the most commonly used antidepressant during pregnancy. Plasma sertraline concentrations vary markedly between individuals, partly explained by variability in hepatic drug metabolizing cytochrome P450-enzyme activity. Our purpose was to study the variability in the plasma concentrations in pregnant women and the passage to their infants. Method Pregnant women with moderate untreated depression were recruited in 2016–2019 in Stockholm Region and randomized to treatment with sertraline or placebo. All received Internet-based cognitive behavior therapy as non-medical treatment. Sertraline plasma concentrations were measured around pregnancy weeks 21 and 30, at delivery, 1-month postpartum, in cord blood and at 48 h of age in the infant. The clinical course of the infants was followed. Results Nine mothers and 7 infants were included in the analysis. Median dose-adjusted sertraline concentration in second trimester was 0.15(ng/mL) /(mg/day), in third trimester and at delivery 0.19 and 1-month postpartum 0.25, with a 67% relative difference between second trimester and postpartum. The interindividual variation was 10-fold. Median concentrations in the infants were 33% and 25% of their mothers’, measured in cord blood, and infant plasma, respectively. Only mild and transient adverse effects were seen on the infants. Conclusion Placental passage of sertraline to the infant is low. However, the interindividual variation in maternal concentrations during pregnancy is huge, why therapeutic drug monitoring might assist in finding the poor metabolizers at risk for adversity and increase the safety of the treatment. Trial registration The trial was registered at clinicaltrials.gov July 9, 2014 with TRN: NCT02185547.


Author(s):  
Maxim Kuzin ◽  
Franziskos Xepapadakos ◽  
Isabel Scharrer ◽  
Marc Augsburger ◽  
Chin‐Bin Eap ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Dong Ho Jung ◽  
Joo Tae Hwang ◽  
Bo-Jeong Pyun ◽  
Song Yi Yu ◽  
Byoung Seob Ko

Aromatase, a cytochrome P450 enzyme that converts androgens into estrogens, is an important drug target for hormone-dependent diseases. The purpose of this study was to elucidate the aromatase inhibitory effects of Ma-Huang-Tang (MHT), a traditional Korean herbal medicine prescription, and to identify its active ingredients. In this study, the inhibitory effect of MHT on aromatase activity was observed using dibenzylfluorescein (DBF) and KGN cells, and the dose-dependent effect of MHT was verified (IC50 values of 251 μg/mL and 246 μg/mL as determined by the two methods, respectively). Furthermore, among the six herbal medicines that constitute MHT, Ephedrae Herba, Cinnamomi Ramulus, and Glycyrrhizae Radix et Rhizoma showed the most potent inhibition of aromatase activity. Furthermore, upon identification of the active MHT compounds, three markers from Glycyrrhizae Radix et Rhizoma, liquiritin (5), liquiritin apioside (6), and liquiritigenin (7), were verified (IC50 values of 530 μM, 508 μM, and 1.611 mM and 499 μM, 522 μM, and 1.41 mM as determined by the two methods, respectively). In addition, their contents were confirmed to be 15.58, 19.80, and 2.22 mg/g, respectively, by HPLC/DAD analysis. These results indicate that the aromatase inhibitory effect of MHT results from the synergistic action of its active components and that MHT has potential as a preventive agent against aromatase activity.


2003 ◽  
Vol 77 (10) ◽  
pp. 555-560 ◽  
Author(s):  
Miroslav Machala ◽  
Pavel Soucek ◽  
Jir� Neca ◽  
Robert Ulrich ◽  
Jir� Lamka ◽  
...  

Leukemia ◽  
2013 ◽  
Vol 27 (12) ◽  
pp. 2311-2321 ◽  
Author(s):  
S E M Herman ◽  
X Sun ◽  
E M McAuley ◽  
M M Hsieh ◽  
S Pittaluga ◽  
...  

Reproduction ◽  
2010 ◽  
Vol 140 (5) ◽  
pp. 713-720 ◽  
Author(s):  
F Mossa ◽  
F Jimenez-Krassel ◽  
J K Folger ◽  
J L H Ireland ◽  
G W Smith ◽  
...  

Androgens have an important role in ovarian follicular growth and function, but circulating androgen concentrations are also associated with ovarian dysfunction, cardiovascular disease, and metabolic disorders in women. The extent and causes of the variation in androgen production in individuals, however, are unknown. Because thecal cells of follicles synthesize androstenedione and testosterone, variation in production of these androgens is hypothesized to be directly related to the inherently high variation in number of healthy growing follicles in ovaries of individuals. To test this hypothesis, we determined whether thecal CYP17A1 mRNA (codes for a cytochrome P450 enzyme involved in androgen synthesis), LH-induced thecal androstenedione production, androstenedione concentrations in follicular fluid, and circulating testosterone concentrations were lower in cattle with relatively low versus high number of follicles growing during follicular waves and whether ovariectomy reduced serum testosterone concentrations. Results demonstrated that cattle with a low follicle number had lower (P<0.05) abundance of CYP17A1 mRNA in thecal cells, reduced (P<0.01) capacity of thecal cells to produce androstenedione in response to LH, lower (P<0.01) androstenedione concentrations in ovulatory follicles, and lower (P<0.02) circulating testosterone concentrations during estrous cycles compared with animals with high follicle number. Also, serum testosterone in cattle with low or high follicle number was reduced by 63 and 70%, respectively, following ovariectomy. In conclusion, circulating androgen concentrations are lower in cattle with low versus high number of follicles growing during follicular waves, possibly because of a reduced responsiveness of thecal cells to LH.


2018 ◽  
Vol 28 (1) ◽  
pp. 56-62
Author(s):  
Cahit Kural ◽  
Arzu Kaya Kocdogan ◽  
Gulcin Güler Şimşek ◽  
Serpil Oğuztüzün ◽  
Pınar Kaygın ◽  
...  

Objective: Intracranial tumors are one of the most frightening and difficult-to-treat tumor types. In addition to surgery, protocols such as chemotherapy and radiotherapy also take place in the treatment. Glutathione S-transferase (GST) and cytochrome P450 (CYP) enzymes are prominent drug-metabolizing enzymes in the human body. The aim of this study is to show the expression of GSTP1, GSTM1, CYP1A1, and CYP1B1 in different types of brain tumors and compare our results with those in the literature. Subjects and Methods: The expression of GSTP1, GSTM1, CYP1A1, and CYP1B1 was analyzed using immunostaining in 55 patients with intracranial tumors in 2016–2017. For GST and CYP expression in normal brain tissue, samples of a portion of surrounding normal brain tissue as well as a matched far neighbor of tumor tissue were used. The demographic features of the patients were documented and the expression results compared. Results: The mean age of the patients was 46.72 years; 29 patients were female and 26 were male. Fifty-seven specimens were obtained from 55 patients. Among them, meningioma was diagnosed in 12, metastases in 12, glioblastoma in 9, and pituitary adenoma in 5. The highest GSTP1, GSTM1, and CYP­1A1 expressions were observed in pituitary adenomas. The lowest GSTP1 expression was detected in glioblastomas and the lowest CYP1B1 expression in pituitary adenomas. Conclusion: GSTP1 and CYP expression is increased in intracranial tumors. These results should be confirmed with a larger series and different enzyme subtypes.


1997 ◽  
Vol 31 (3) ◽  
pp. 349-356 ◽  
Author(s):  
Vish S Watkins ◽  
Ron E Polk ◽  
Jennifer L Stotka

Objective To describe the drug interactions of dirithromycin, a new macrolide, and to compare them with those of other macrolides. Data Sources A literature search was performed using MEDLINE to identify articles published between January 1980 and July 1995 concerning the drug interactions of macrolides. Published abstracts were also examined. All studies using dirithromycin were performed under the sponsorship of Eli Lilly and Company. Data Synthesis Erythromycin, the first macrolide discovered, is metabolized by the cytochrome P450 enzyme system. By decreasing their metabolism, erythromycin can interact with other drugs metabolized by the cytochrome P450 enzymes. The lack of such interactions would be a desirable feature in a newer macrolide. We describe studies performed to detect any interactions of dirithromycin with cyclosporine, theophylline, terfenadine, warfarin, and ethinyl estradiol. The studies showed that dirithromycin, like azithromycin, is much less likely to cause the interactions detected with clarithromycin and erythromycin. A review of the literature showed differences among macrolides in their abilities to inhibit cytochrome P450 enzymes and, thus, to cause drug–drug interactions. Erythromycin and clarithromycin inhibit cytochrome P450 enzymes, and have been implicated in clinically significant interactions. Azithromycin and dirithromycin neither inhibit cytochrome P450 enzymes nor are implicated in clinically significant drug–drug interactions. Conclusions Dirithromycin, a new macrolide, does not inhibit the cytochrome P450 enzyme system. The concomitant use of dirithromycin with cyclosporine, theophylline, terfenadine, warfarin, or ethinyl estradiol was studied in pharmacokinetic and pharmacodynamic studies. In vitro, dirithromycin did not bind cytochrome P450. In healthy subjects, erythromycin increases the clearance of cyclosporine by 51%, whereas dirithromycin causes no significant changes in the pharmacokinetics of cyclosporine. In kidney transplant recipients, administration of dirithromycin was associated with a significant (p < 0.003) decrease of 17.4% in the clearance of cyclosporine. In patients taking low-dose estradiol, the administration of dirithromycin caused a significant (p < 0.03) increase of 9.9% in the clearance of ethinyl estradiol; escape ovulation did not occur. Unlike erythromycin and clarithromycin, dirithromycin had no significant effects on the pharmacokinetics of theophylline, terfenadine, or warfarin. The alterations typical of drug interactions that are based on inhibition of the cytochrome P450 system occurring with erythromycin and clarithromycin were not observed with dirithromycin.


Sign in / Sign up

Export Citation Format

Share Document