scholarly journals Removal of Dye from a Leather Tanning Factory by Flat-Sheet Blend Ultrafiltration (UF) Membrane

Membranes ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 47 ◽  
Author(s):  
Maryam Y. Ghadhban ◽  
Hasan Shaker Majdi ◽  
Khalid T. Rashid ◽  
Qusay F. Alsalhy ◽  
D. Shanthana Lakshmi ◽  
...  

In this work, a flat-sheet blend membrane was fabricated by a traditional phase inversion method, using the polymer blends poly phenyl sulfone (PPSU) and polyether sulfone (PES) for the ultrafiltration (UF) application. It was hypothesized that adding PES to the PPSU polymer blend would improve the properties of the PPSU membrane. The effect of the PES concentration on the blend membrane properties was investigated extensively. The characteristics of PPSU-PES blend membranes were investigated using atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle measure, and contaminant (dye) elimination efficiency. This study showed that PES clearly affected the structural formation of the blended membranes. A considerable increase in the average roughness (about 93%) was observed with the addition of 4% PES, with a higher mean pore size accompanied by a rise in the pores’ density on the surface of the membrane. The addition of up to 4% PES had a significant influence on the hydrophilic character of the PPSU-PES membrane, by lowering the value of the contact angle (CA) (i.e., to 56.9°). The performance of the PPSU-PES composite membranes’ UF performance was systematically investigated, and the membrane pure water permeability (PWP) was enhanced by 25% with the addition of 4% PES. The best separation removal factor achieved in the current investigation for dye (Drupel Black NT) was 96.62% for a PPSU-PES (16:4 wt./wt.%) membrane with a 50% feed dye concentration.

2016 ◽  
Vol 29 (4) ◽  
pp. 467-475 ◽  
Author(s):  
R Saranya ◽  
JS Beril ◽  
D Mohan

In this work, an attempt has been made for protein rejection from aqueous solution using ultrafiltration blend membrane based on poly(phenylene ether ether sulfone) (PEES) and polyetherimide (PEI) was prepared in various blend compositions. Prepared membranes were characterized in terms of pure water flux, water content, membrane hydraulic resistance, porosity, contact angle, scanning electron microscopy, thermogravimetric analysis, and attenuated total reflectance-Fourier transform infrared spectroscopy. Studies were carried out to find out the rejection of proteins such as trypsin, pepsin, egg albumin, and bovine serum albumin. The extent of protein separation is directly proportional to molecular weight of protein. Pristine PEES membrane exhibited high-percentage protein rejection of BSA (92.7%), EA (88.2%), pepsin (85.8%), and trypsin (82.2%) compared to PEES/PEI blend membranes. PEES/PEI blend membranes have better hydrophilic property compared to pristine PEES membrane. Pristine PEES has a contact angle of 97.8°, embedded with PEI and reduced to 67.9°. The thermal stability of the membrane was slightly decreased when the percentage of PEI composition into the PEES/PEI blend increased and observed that the pure PEES membrane has superior thermal stability than PEES/PEI blend membranes


2019 ◽  
Vol 15 (3) ◽  
pp. 361-366
Author(s):  
Nurul Fattin Diana Junaidi ◽  
Nur Hidayati Othman ◽  
Munawar Zaman Shahruddin ◽  
Nur Hashimah Alias ◽  
Woe Jye Lau ◽  
...  

Membrane based separation system is considered as a promising technology to purify water, owing to its simplicity and efficiency in operation. However, the application is limited by membrane fouling, which can lead to the declination of water flux and premature failure of membrane. The fouling can be controlled through membrane surface modification by blending hydrophilic materials during the casting solution preparation. Polyethersulfone (PES) membrane is naturally hydrophobic due to lack of oxygen functional group, which limits its application in the filtration of water. Therefore, modification of PES-based membranes is required. In this work, modification of the PES membrane was carried out by incorporating carbon-based nanomaterials (graphene oxide (GO)) and a well-known organic polymer (polyvinylpyrrolidone (PVP)). The effect of each additive toward the hydrophilicity of composite PES membrane was then investigated. GO was synthesized using modified Hummers method due to its simpler and shorter process. Each additive was added during the casting solution preparation and the amount added was varied from 0.5 to 1.0 wt%. The resultant composite PES membranes were characterized using XRD, FTIR and TGA prior to hydrophilicity and pure water flux (PWF) measurement. It was observed that the additives (PVP and GO) have significantly affected the membranes hydrophilicity, resulting in lower contact angle and higher pure water flux. The highest value of PWF (230 L/m2.h) with lowest contact angle (42 °) were observed for PES-1.0GOPVP membrane due to high amount of GO and PVP. Improved PWF performance of composite PES-1.0GOPVP membrane was attributed to the better dispersibility of the PVP and GO and increased surface hydrophilicity of the modified composite membranes. This study indicated that PVP and GO are effective modifiers to enhance the performance of PES membrane


2021 ◽  
Vol 46 (1) ◽  
pp. 52-60
Author(s):  
Karen Gonzaga ◽  
Jose Carlos Mierzwa

Polyethersulfone (PES) hollow fiber membranes were fabricated using dry-jet wet spinning technique, a phase inversion method, with 16 and 20% PES, N-methyl-2-pyrrolidone (NMP) as solvent and tap water as nonsolvent, in order to evaluate if the amount of polymer has a significant effect on its properties. They were characterized using SEM for a morphological analysis, a continuous system to measure pure water permeability (PWP) and molecular weight cutoff (MWCO), and a universal testing machine to tensile tests. The obtained results for PWP was an average of about 220 L m- ² h-1 bar-1 for the 16% PES membrane and 174 L m- ² h-1 bar-1 for the 20% PES membrane. The results of mechanical resistance and MWCO did not present statistical differences. Thus, it is confirmed that the 16% PES membrane can be as good as the 20%, despite using less polymer, a finding that can further motivate membrane modification studies and other related works.


Author(s):  
Munawar Zaman Shahruddin ◽  
Nuratikah Zakaria ◽  
Nurul Fattin Diana Junaidi ◽  
Nur Hashimah Alias ◽  
Nur Hidayati Othman

Polyethersulfone/Titanium oxide (PES/TiO2) composite membranes at various compositions of TiO2 nanoparticle (0, 0.1 and 0.5 wt. %) were prepared via phase inversion method. The prepared composite membranes were then tested for degradation process and separation process for oily wastewater. It was found that the addition of TiO2 that possess visible-light response activity led to an improvement of the membrane performances especially in photocatalytic activities. The membrane performances were also investigated by using liquid separation system in order to obtain the flux/permeation rate and also the percentage of oil removal by the membranes. The results indicate that the increment the amount of TiO2 nanoparticle in the composite membrane reduced the permeation flux. Further study has been made by characterizing the membranes in terms of contact angle, Field Emission Scanning Electron Microscope (FESEM), Fourier Transform Infrared Spectrometer (FTIR) and X-Ray Diffraction (XRD) analysis. The characterization results indicate that the TiO2 nanoparticles were uniformly mixed in the membrane. The increased of membrane hydrophilicity was demonstrated by the contact angle measurement. By adding TiO2, the membrane hydrophilicity was observed to be better than the neat PES composite membrane. Cross sectional images from FESEM also indicate that the addition of TiO2 nanoparticles help in increasing the macro-void of the membranes. Finally, a comparison between neat PES membrane and PES/TiO2 nanoparticle membrane proved that addition of TiO2 nanoparticle can be one of the ways to maximize the removal of oil.


2020 ◽  
Vol 15 ◽  
pp. 155892502092317
Author(s):  
Fahad S Al-Mubaddel ◽  
Hamad S AlRomaih ◽  
Mohammad Rezaul Karim ◽  
Monis Luqman ◽  
Maher M Al-Rashed ◽  
...  

The present study reports on the preparation of novel nanofibre membranes from the thermoplastic polymer polyvinylidene fluoride coated with chitosan to enhance membrane properties such as hydrophilicity, mechanical properties, water flux and salt rejection. Initially, a supporting layer was produced from polyvinylidene fluoride using phase inversion methods, followed by being coated with chitosan using either electrospinning or immersion methods. Two types of fabricated membranes with different coating methods were characterized and tested for physical and chemical performance using field-emission scanning electron microscopy, tensile tests, permeation tests (water flux and salt rejection) and contact angle measurements. It was found that the support membrane (polyvinylidene fluoride) produced by the phase inversion method that was coated with chitosan using electrospinning showed better performance, with a salt rejection up to 70% for MgSO4, a decreased the contact angle (52°) and improved the elongation at the breaking point (~82%).


2016 ◽  
Vol 75 (3) ◽  
pp. 670-685 ◽  
Author(s):  
Nadir Dizge ◽  
Hakan Gonuldas ◽  
Yasin Ozay ◽  
Hasan Ates ◽  
Kasim Ocakoglu ◽  
...  

This study was performed to synthesize membranes of polyethersulfone (PES) blended with graphene oxide (GO) and PES blended with GO functionalized with photoactive semiconductor catalyst (TiO2 and ZnO). The antifouling and self-cleaning properties of composite membranes were also investigated. The GO was prepared from natural graphite powder by oxidation method at low temperature. TiO2 and ZnO nanopowders were synthesized by anhydrous sol–gel method. The surface of TiO2 and ZnO nanopowders was modified by a surfactant (myristic acid) to obtain a homogeneously dispersed mixture in a solvent, and then GO was functionalized by loading with these metal oxide nanopowders. The PES membranes blended with GO and functionalized GO into the casting solution were prepared via phase inversion method and tested for their antifouling as well as self-cleaning properties. The composite membranes were synthesized as 14%wt. of PES polymer with three different concentrations (0.5, 1.0, and 2.0%wt.) of GO, GO-TiO2, and GO-ZnO. The functionalization of membranes improved hydrophilicity property of membranes as compared to neat PES membrane. However, the lowest flux was obtained by functionalized membranes with GO-TiO2. The results showed that functionalized membranes demonstrated better self-cleaning property than neat PES membrane. Moreover, the flux recovery rate of functionalized membranes over five cycles was higher than that of neat membrane.


2013 ◽  
Vol 681 ◽  
pp. 309-313
Author(s):  
Dong Hua Zhang ◽  
Li Jing Pan ◽  
Da Zhi Sun

BaBi2Nb2O9/PVDF (polyvinylidene fluoride) composite ultrafiltration (UF)membranes were prepared by alloying BaBi2Nb2O9 (BBN) particles uniformly in the PVDF solution (15% polymer weight) and used a phase-inversion method. This paper studied the effect of the concentration of BBN from 0% to 5% in 0.2Mpa on pure water flux and rejection rate to Bovine serum albumin (BSA). The cross-sectional structures of composite membranes were observed by scanning electron microscopy (SEM). Moreover, XRD results revealed the crystal structure of PVDF. The experimental results showed that the BBN/PVDF composite ultrafiltration membranes were superior in separation performances than the pure PVDF membranes due to the addition of BBN.


2020 ◽  
Vol 55 (3) ◽  
pp. 310-326
Author(s):  
Mohammad Ramezanianpour ◽  
Muttucumaru Sivakumar ◽  
Natalie Osborn ◽  
Ying Zhang ◽  
Hakim Kawa

Abstract The wetting phenomenon is a major problem in the membrane distillation (MD) process, and it is the main reason that limits MD being used in wastewater reclamation. Active surfactant in the detergents reduces the contact angle between the liquid and the hydrophobic membrane surface, which could result in wetting. Extensive laboratory research was conducted using commercial hydrophobic flat-sheet membranes to identify the impact of anionic surfactants and surface tension forces on these membranes. The aim of this paper is to find a suitable membrane for pure water production from greywater using MD, as well as to provide a relationship between surfactant concentration and the contact angle for different types of membrane. The absorbance of each sample was measured by a spectrophotometer prior to the contact angle test on four different types of hydrophobic membranes. It was concluded that the polypropylene membrane would be unsuitable for the treatment of greywater directly due to the loss of surface tension forces upon the addition of an anionic surfactant. However, the polytetrafluoroethylene membrane could be effective in this process while the concentration of surfactant in the feed source is kept constant. The results from the experimental tests proposed a relationship between the contact angle of a water droplet on the surface of a flat-sheet membrane and the concentration of surfactant in the solution.


2014 ◽  
Vol 70 (2) ◽  
Author(s):  
Zawati Harun ◽  
Muhamad Fikri Shohur ◽  
Mohd Riduan Jamalludin ◽  
Muhamad Zaini Yunos ◽  
Hatijah Basri

The effects of two types of additives rice husk silica (RHS) towards membrane hydrophilicity and flux performance were investigated. Different percentages or concentrations of rice husk silica (RHS) additive were used to form a mixed matrix membrane. This flat sheet mixed matrix membrane was prepared via phase inversion technique. The fabricated membrane was characterized by contact angle and surface roughness measurements, whereas the flux permeation was measured using pure water flux. The result demonstrated that the addition both types of rice husk silica have increased the hydrophilicity properties of the mixed matrix membrane. Stronger effect of hydrophilicity is shown upon addition of amorphous rice husk particle where both contact angle and surface roughness were reduced and increased, respectively.   


2018 ◽  
Vol 2017 (2) ◽  
pp. 329-339 ◽  
Author(s):  
Sevgi Güneş-Durak ◽  
Türkan Ormancı-Acar ◽  
Neşe Tüfekci

Abstract In this study, four different membranes were fabricated by using polyetherimide and polyacrylonitrile polymers, N-methyl-2-pyrrolidone and polyvinylpyrrolidone (PVP) via phase inversion method to improve the membrane performance in fruit juice wastewater (FJWW) treatment. The addition of PVP to the casting solution increased membrane hydrophilicity, water content, contact angle, porosity, Fourier transform infrared spectroscopy peaks, membrane thickness, average roughness and viscosity of cast solutions compared to the bare membrane. It can be said that the addition of a lower polymer concentration and PVP intensively increases the pure water flux of the membrane. However, as the flux increased, a small decrease in FJWW rejection was observed.


Sign in / Sign up

Export Citation Format

Share Document