scholarly journals Long-Running Comparison of Feed-Water Scaling in Membrane Distillation

Membranes ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 173
Author(s):  
Mohammad Rezaei ◽  
Albraa Alsaati ◽  
David M. Warsinger ◽  
Florian Hell ◽  
Wolfgang M. Samhaber

Membrane distillation (MD) has shown promise for concentrating a wide variety of brines, but the knowledge is limited on how different brines impact salt scaling, flux decline, and subsequent wetting. Furthermore, past studies have lacked critical details and analysis to enable a physical understanding, including the length of experiments, the inclusion of salt kinetics, impact of antiscalants, and variability between feed-water types. To address this gap, we examined the system performance, water recovery, scale formation, and saturation index of a lab-scale vacuum membrane distillation (VMD) in long-running test runs approaching 200 h. The tests provided a comparison of a variety of relevant feed solutions, including a synthetic seawater reverse osmosis brine with a salinity of 8.0 g/L, tap water, and NaCl, and included an antiscalant. Saturation modeling indicated that calcite and aragonite were the main foulants contributing to permeate flux reduction. The longer operation times than typical studies revealed several insights. First, scaling could reduce permeate flux dramatically, seen here as 49% for the synthetic brine, when reaching a high recovery ratio of 91%. Second, salt crystallization on the membrane surface could have a long-delayed but subsequently significant impact, as the permeate flux experienced a precipitous decline only after 72 h of continuous operation. Several scaling-resistant impacts were observed as well. Although use of an antiscalant did not reduce the decrease in flux, it extended membrane operational time before surface foulants caused membrane wetting. Additionally, numerous calcium, magnesium, and carbonate salts, as well as silica, reached very high saturation indices (>1). Despite this, scaling without wetting was often observed, and scaling was consistently reversible and easily washed. Under heavy scaling conditions, many areas lacked deposits, which enabled continued operation; existing MD performance models lack this effect by assuming uniform layers. This work implies that longer times are needed for MD fouling experiments, and provides further scaling-resistant evidence for MD.

2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Marek Gryta

AbstractMembrane distillation was used to produce demineralized water from ground water. The influence of feed water pretreatment carried out in a contact clarifier (softening with Ca(OH)2 and coagulation with FeSO4 · 7H2O) followed by filtration, on the process effectiveness was evaluated. It was found that the chemical pretreatment decreased the membrane fouling; however, the degree of water purification was insufficient because precipitation of small amounts of deposit on the membrane surface during the process operation was still observed. The permeate flux was gradually decreasing as a result of scaling. The morphology and composition of the fouling layer were studied using scanning electron microscopy coupled with energy dispersion spectrometry. The presence of significant amounts of silica, apart from calcium and magnesium, was determined in the formed deposit. The removal of foulants by heterogeneous crystallization performed inside the filter (70 mesh), assembled directly at the module inlet, was found to be a solution preventing the membrane scaling.


2006 ◽  
Vol 60 (6) ◽  
Author(s):  
K. Karakulski ◽  
M. Gryta ◽  
M. Sasim

AbstractApplication of ultrafiltration, nanofiltration, reverse osmosis, membrane distillation, and integrated membrane processes for the preparation of process water from natural water or industrial effluents was investigated. A two-stage reverse osmosis plant enabled almost complete removal of solutes from the feed water. High-purity water was prepared using the membrane distillation. However, during this process a rapid membrane fouling and permeate flux decline was observed when the tap water was used as a feed. The precipitation of deposit in the modules was limited by the separation of sparingly soluble salts from the feed water in the nanofiltration. The combined reverse osmosis—membrane distillation process prevented the formation of salt deposits on the membranes employed for the membrane distillation. Ultrafiltration was found to be very effective removing trace amounts of oil from the feed water. Then the ultrafiltration permeate was used for feeding of the remaining membrane modules resulting in the total removal of oil residue contamination. The ultrafiltration allowed producing process water directly from the industrial effluents containing petroleum derivatives.


2010 ◽  
Vol 61 (8) ◽  
pp. 2013-2020 ◽  
Author(s):  
D. Y. Hou ◽  
J. Wang ◽  
D. Qu ◽  
Z. K. Luan ◽  
C. W. Zhao ◽  
...  

The direct contact membrane distillation (DCMD) applied for desalination of brackish groundwater with self-made polyvinylidene fluoride (PVDF) membranes was presented in the paper. The PVDF membrane exhibited high rejection of non-volatile inorganic salt solutes and a maximum permeate flux 24.5 kg m−2 h−1 was obtained with feed temperature at 70°C. The DCMD experimental results indicated that the feed concentration had no significant influence on the permeate flux and the rejection of solute. When natural groundwater was used directly as the feed, the precipitation of CaCO3 would be formed and clog the hollow fibre inlets with gradual concentration of the feed, which resulted in a rapid decline of the module efficiency. The negative influence of scaling could be eliminated by acidification of the feed. Finally, a 250 h DCMD continuous desalination experiment of acidified groundwater with the concentration factor at constant 4.0 was carried out. The permeate flux kept stable and the permeate conductivity was less than 7.0 μS cm−1 during this process. Furthermore, there was no deposit observed on the membrane surface. All of these demonstrated that DCMD could be efficiently used for production of high-quality potable water from brackish groundwater with water recovery as high as 75%.


2007 ◽  
Vol 9 (2) ◽  
pp. 15-18 ◽  
Author(s):  
Marek Gryta

Concentration of FeSO4 spent solutions by membrane distillation The possibility of potential application of membrane distillation for the concentration of waste salt solutions has been presented in this work. It was found that the oxidation of iron compounds takes place during the process that was associated with the formation of a layer of oxides on the membrane surface. A fast decline of the permeate flux was observed due to the scaling phenomena. The problem of scaling was eliminated by the acidification with H2SO4 of the feed to the pH value of 2.


2018 ◽  
Vol 30 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Dong-Wan Cho ◽  
Gihoon Kwon ◽  
Jeongmin Han ◽  
Hocheol Song

In this study, the influence of humic acid on the treatment of coalbed methane water by direct contact membrane distillation was examined with bench-scale test unit. During short-term distillation (1000 min), high level of humic acid above 50 ppm resulted in significant decrease in permeate flux, while low level of humic acid (∼2 ppm) had little influence on the flux. For the long-term distillation (5000 min), the flux decline began at 3400 min in the presence of 5 ppm humic acid and 5 mM Ca2+, and decreased to ∼40% of initial flux at 5000 min. The spectroscopic analysis of the membrane used revealed that the surface was covered by hydrophilic layers mainly composed of calcite. The membrane fouling effect of humic acid became more significant in the presence of Ca2+ due to more facile calcite formation on the membrane surface. It was demonstrated that humic acid enhanced CaCO3 deposition on the membrane surfaces, thereby expediting the scaling phenomenon.


2016 ◽  
Vol 11 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Ehsan Karbasi ◽  
Javad Karimi-Sabet ◽  
J. Mohammadi Roshandeh ◽  
M. A. Moosavian ◽  
H. Ahadi

Abstract Some challenges, including inappropriate distribution of currents on the membrane surface, poor hydrodynamics and existing severe temperature polarization (TP) phenomenon in MD modules, impede industrialization of MD process. Computational fluid dynamics (CFD) method was used for numerical simulation of hydrodynamics in air gap membrane distillation modules. One of two simulated modules in this work is a novel developed one in which heat and mass transfer data was compared with available literature data. Moreover, the effect of using baffles in module was investigated. Comparison between the novel module and conventional module indicates higher trans-membrane mass flux and gained output ratio (GOR) coefficient by 7% and 15%, respectively. Moreover, the effects of different operating conditions including feed temperatures and feed flow rates on permeate flux were investigated.


2018 ◽  
Vol 13 (1) ◽  
pp. 200-209 ◽  
Author(s):  
Atia E. Khalifa

Abstract Membrane distillation (MD) is a promising thermally-driven membrane separation technology for water desalination. In MD, water vapor is being separated from the hot feed water solution using a micro-porous hydrophobic membrane, due to the difference in vapor pressures across the membrane. In the present work, experiments are conducted to compare the performance of water gap membrane distillation (WGMD) and air gap membrane distillation (AGMD) modules under the main operating and design conditions including the feed and coolant temperatures, membrane material and pore sizes, and the gap width. Results showed that the WGMD module produced higher fluxes as compared to the AGMD module, for all test conditions. The feed temperature is the dominant factor affecting the system flux. The permeate flux increases with reducing the gap width for both water and air gap modules. However, WGMD module was found to be less sensitive to the change in the gap width compared to the AGMD module. The PTFE membrane produced higher permeate flux as compared to the PVDF membrane. Bigger mean pore diameter enhanced the permeate flux, however, this enhancement is marginal at high feed temperatures. With increasing the feed temperature, the GOR values increase and the specific energy consumption decreases.


2018 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
I N Widiasa ◽  
N Sinaga ◽  
D Ariyanti

Improving performance of low pressure reverse osmosis systems by intermittent autoflushing Scaling formation on the membrane surface in the form of calcium carbonate, calcium sulphate, silica, and/or magnesium silicate is a main problem of the reverse osmosis (RO) application for upgrading low grade water. Scaling in RO system is generally controlled by softening the feed water, limiting the recovery and/or the addition of antiscalants which is impractical for household RO system. In this work, the feasibility of intermittent autoflushing to prevent scale formation in household RO systems was investigated. All experiments were carried out using commercially available RO membrane (CSM RE-1812LP) which operated for 6 hours under operating pressure 5 kg/cm2 and total recycle operating mode. Model solution of feed water contain CaCl2 and NaHCO3 were prepared to meet various LSI values in the range of 0 to 1.5. Duration and interval time of autoflush were in the range of 60 to 15 s and 5 to 60 min respectively. The results shown that the permeate flux of the system which operated using intermittent autoflushing relatively stable. It is emphasized that intermittent autoflushing may improve the performance of household reverse osmosis systems.Keywords: Autoflushing, scaling, physical cleaning, reverse osmosis  Abstrak Pembentukan kerak (scaling) pada permukaan membran berupa kerak kalsium karbonat, kalsium sulfat, silika dan atau magnesium silikat merupakan permasalahan utama pada aplikasi sistem membran reverse osmosis (RO) pada proses pemurnian air. Scaling pada sistem RO umumnya dikontrol dengan melakukan pretreatment terhadap air umpan seperti softening, menambahkan zat antiscalant pada saat proses pemisahan serta membatasi tingkat recovery, dimana proses-proses tersebut tidak praktis apabila diaplikasikan pada sistem RO skala rumah tangga. Penelitian ini bertujuan untuk melihat kemungkinan metode intermittent autoflush dapat diaplikasikan untuk menghambat terjadinya scaling pada sistem RO skala rumah tangga. Penelitian ini dilakukan dengan menggunakan satu unit membran spiral wound jenis CSM RE-1812LP yang dioperasikan dengan tekanan operasi 5 kg/cm2 dan waktu operasi ± 6 jam. Larutan umpan sintesis dibuat dengan melarutkan CaCl2 dan NaHCO3 hingga nilai LSI mencapai kisaran 0-1,5. Durasi dan interval dari metode intermittent autoflush divariasikan pada kisaran 60-15 detik dan 5-60 menit. Hasil penelitian menunjukkan bahwa fluks permeat relatif stabil pada sistem RO yang menggunakan metode intermittent autoflush. Hal ini menandakan bahwa metode intermittent autoflush ini dimungkinkan untuk meningkatkan kinerja dari sistem RO skala rumah tangga.Kata Kunci: Autoflushing, scaling, physical cleaning, reverse osmosis


2018 ◽  
Vol 2 (1) ◽  

This study investigates the membrane performance and fouling control in the bubble-assisted sweeping gas membrane distillation with high concentration saline (333 K saturated solution) as feed. The results show that longer bubbling interval (3 min) at a fixed bubbling duration of 30s can most efficiently increase the the flux enhancement ratio up to 1.518. Next, the flux increases with the gas flowrate under a relatively lower level, but tends to a plateau after the threshold level (1.2 L•min-1). Compared to non-bubbling case, the permeate flux reaches up to 1.623 fold at a higher bubble relative humidity of 80 %. It was also found that greater flux enhancement can be achieved and meanwhile dramatic flux decline can be delayed for an intermittent bubbling system with a smaller nozzle size. These results accord well with the observations of fouling deposition in situ on the membrane surface with SEM.


Author(s):  
S. A. Mousavi ◽  
Z. Arab Aboosadi ◽  
A. Mansourizadeh ◽  
B. Honarvar

Abstract Wetting and fouling have significantly affected the application of membrane distillation (MD). In this work, a dip-coating method was used for improving surface hydrophobicity of the polyetherimide (PEI) hollow fiber membrane. An air gap membrane distillation (AGMD) process was applied for treatment of the methylene blue (MB) solution. The porous PEI membrane was fabricated by a dry-wet spinning process and the hydrophobic 2-(Perfluoroalkyl) ethanol (Zonyl® BA) was used as the coating material. From FESEM, the modified PEI-Zonyl membrane showed an open structure with large finger-like cavities. The modified membrane displayed a narrow pore size distribution with mean pore size of 0.028 μm. The outer surface contact angle of the PEI-Zonly membrane increased from 81.3° to 100.4° due to the formation of an ultra-thin coated layer. The pure water flux of the PEI-Zonyl membrane was slightly reduced compared to the pristine PEI membrane. The permeate flux of 6.5 kg/m2 h and MB rejection of 98% was found for the PEI-Zonyl membrane during 76 h of the AGMD operation. Adsorption of MB on the membrane surface was confirmed based on the Langmuir isotherm evaluation, AFM and FESM analysis. The modified PEI-Zonyl membrane can be a favorable alternative for AGMD of dyeing wastewaters.


Sign in / Sign up

Export Citation Format

Share Document