scholarly journals Investigation into the Novel Microalgae Membrane Bioreactor with Internal Circulating Fluidized Bed for Marine Aquaculture Wastewater Treatment

Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 353
Author(s):  
Yi Ding ◽  
Zhansheng Guo ◽  
Junxue Mei ◽  
Zhenlin Liang ◽  
Zhipeng Li ◽  
...  

A microalgae membrane bioreactor (MMBR) with internal circulating fluidized bed (ICFB) was constructed at room temperature to study the removal efficiency of marine aquaculture wastewater pollutants and continuously monitor the biomass of microalgae. Within 40 days of operation, the removal efficiency of NO3−–N and NH4+–N in the ICFB-MMBR reached 52% and 85%, respectively, and the removal amount of total nitrogen (TN) reached 16.2 mg/(L·d). In addition, the reactor demonstrated a strong phosphorus removal capacity. The removal efficiency of PO43−–P reached 80%. With the strengthening of internal circulation, the microalgae could be distributed evenly and enriched quickly. The maximum growth rate and biomass concentration reached 60 mg/(L·d) and 1.4 g/L, respectively. The harvesting of microalgae did not significantly affect the nitrogen and phosphorus removal efficiency of ICFB-MMBR. The membrane fouling of the reactor was investigated by monitoring transmembrane pressure difference (TMP). Overall, the membrane fouling cycle of ICFB-MMBR system was more than 40 days.

Archaea ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yue Li ◽  
Qi Hu ◽  
Da-Wen Gao

An integrated anaerobic fluidized-bed membrane bioreactor (IAFMBR) was investigated to treat synthetic high-strength benzothiazole wastewater (50 mg/L) at a hydraulic retention time (HRT) of 24, 18, and 12 h. The chemical oxygen demand (COD) removal efficiency (from 93.6% to 90.9%), the methane percentage (from 70.9% to 69.27%), and the methane yield (from 0.309 m3 CH4/kg·CODremoved to 0.316 m3 CH4/kg·CODremoved) were not affected by decreasing HRTs. However, it had an adverse effect on membrane fouling (decreasing service period from 5.3 d to 3.2 d) and benzothiazole removal efficiency (reducing it from 97.5% to 82.3%). Three sludge samples that were collected on day 185, day 240, and day 297 were analyzed using an Illumina® MiSeq platform. It is striking that the dominant genus of archaea was always Methanosaeta despite of HRTs. The proportions of Methanosaeta were 80.6% (HRT 24), 91.9% (HRT 18), and 91.2% (HRT 12). The dominant bacterial genera were Clostridium in proportions of 23.9% (HRT 24), 16.4% (HRT 18), and 15.3% (HRT 12), respectively.


2002 ◽  
Vol 46 (9) ◽  
pp. 193-200 ◽  
Author(s):  
Z. Ujang ◽  
M.R. Salim ◽  
S.L. Khor

A laboratory-scale membrane bioreactor (MBR) was fed with synthetic wastewater to investigate the possibility of simultaneous removal of organic, nitrogen and phosphorus by intermittent aeration. The MBR consists of two compartments using a microfiltration membrane with 0.2 mm pore size and a surface area of 0.35 m2. Hydraulic retention time was set at 24 hours and solid retention time 25 days. MLSS concentration in the reactor was in the range of 2,500-3,800 mg/L. The MLSS internal recycling ratio was maintained at 100% influent flow rate. Intermittent aeration was applied in this study to provide an aerobic-anaerobic cycle. Three stages of operations were conducted to investigate the effect of aeration and non-aeration on simultaneous organic and nutrient removal. In Stage 1, time cycles of aeration and non-aeration were set at 90/150 min and 150/90 min in the first and second compartment, the removal efficiency was 97%, 94% and 70% for COD, nitrogen and phosphorus respectively. In Stage 2, time cycles of aeration and non-aeration were set at 60/120 min and 120/60 min in the first and second compartment, the removal efficiency was 97%, 96% and 71% for COD, nitrogen and phosphorus respectively. In Stage 3, time cycles of aeration and non-aeration were set at 120/120 min and 120/120 min in compartment 1 and 2, the removal efficiency was 98%, 96% and 78% for COD, nitrogen and phosphorus respectively. Results show that longer non-aeration time in the second compartment provided better performances of biological phosphorus removal.


2004 ◽  
Vol 31 (4) ◽  
pp. 349-356
Author(s):  
Li Na ◽  
Li Zhidong ◽  
Li Guode ◽  
Wang Yan ◽  
Wu Shiwei ◽  
...  

2020 ◽  
Vol 81 (9) ◽  
pp. 2023-2032
Author(s):  
Jingqing Gao ◽  
Lei Yang ◽  
Rui Zhong ◽  
Yong Chen ◽  
Jingshen Zhang ◽  
...  

Abstract The environmental problems related to rural domestic sewage treatment are becoming increasingly serious, and society is also concerned about them. A baffled vertical flow constructed wetland (BVFCW) is a good choice for cleaning wastewater. Herein, a drinking-water treatment sludge-BVFCW (D-BVFCW) parallel with ceramsite-BVFCW (C-BVFCW) planted with Oenanthe javanica (O. javanica) to treat rural domestic sewage was investigated, aiming to compare nitrogen and phosphorus removal efficiency in different BVFCWs. A removal of 23.9% NH4+-N, 24.6% total nitrogen (TN) and 76.7% total phosphorus (TP) occurred simultaneously in the D-BVFCW; 56.4% NH4+-N, 60.8% TN and 55.2% TP respectively in the C-BVFCW. The root and plant height increased by an average of 7.9 cm and 8.3 cm, respectively, in the D-BVFCW, and by 0.7 cm and 1.1 cm, respectively, in the C-BVFCW. These results demonstrate that the D-BVFCW and C-BVFCW have different effects on the removal of N and P. The D-BVFCW mainly removed P, while C-BVFCW mainly removed N.


2018 ◽  
Vol 78 (11) ◽  
pp. 2288-2296 ◽  
Author(s):  
Hongying Xu ◽  
Ru Jin ◽  
Chan Zhang ◽  
Yupeng Wu ◽  
Xiaohui Wang

Abstract Excessive emission of plant nutrients (such as nitrogen and phosphorus) into the water body can induce eutrophication. Therefore, how to control eutrophic water efficiently and economically is very important. In the paper, highly efficient aerobic denitrifying phosphorus removing J16 bacteria was isolated from the activated sludge of an aerobic bioreactor in Taiyuan municipal wastewater treatment plant by using the blue–white spot screening method, an aerobic phosphorus absorption test, nitrate reduction test, nitrogen removal experiments, and plate coating and streaking methods. Through 16S rDNA gene homology comparison and physiological and biochemical identification, the J16 strain was preliminarily identified as Escherichia coli, with a sequence similarity of 99%. The 16S rDNA sequence of strain J16 was submitted to GenBank (accession number: MF667015). The effect of temperature, pH, percentage of inoculum and phosphate-P (PO43−-P) concentration on denitrification and phosphorus removal efficiency was investigated through a single-factor experiment. The optimum conditions of the J16 strain for denitrification and phosphorus removal were as follows: 30°C, neutral or weak alkaline (pH: 7.2–8), and 3% of inoculum, respectively. The denitrification and phosphorus removal efficiency of strain J16 was the highest when PO43−-P and nitrate-N(NO3−-N) concentrations were 8.9 and 69.31 mg/L, and the removal were 96.03% and 94.55%, respectively. In addition, strain J16 could reduce phosphoric acid to phosphine (PH3) and remove some phosphorus under hypoxia conditions. This is the first study to report the involvement of Escherichia coli in nitrogen and phosphorus removal under aerobic and hypoxia conditions. Based on the above results, the strain J16 can effectively remove nitrogen and phosphorus, and will be utilized in enhancing treatment of nitrogen and phosphorus-containing industrial wastewater and phosphorus reclamation.


2016 ◽  
Vol 7 (4) ◽  
pp. 442-448 ◽  
Author(s):  
Xin Li ◽  
Yali Liu ◽  
Fangfang Liu ◽  
Aimin Liu ◽  
Qilan Feng

A membrane bioreactor (MBR) was used for treating biological aerated filter effluent in a municipal wastewater plant, and chemical phosphorus removal was accomplished in the MBR. The results showed that ferric chloride of 20 mg/L and aluminum sulfate of 30 mg/L were the optimal dosages for total phosphorus (TP) removal, and the TP removal efficiency was over 80%. In long-term continuous operations, both ferric chloride and aluminum sulfate effectively mitigated membrane fouling, with the corresponding growth rate of transmembrane pressure decreased to 0.08 and 0.067 kPa/d, respectively. Sludge particle sizes analysis demonstrated that the decrease of particle sizes lower than 50 μm was the main reason for membrane fouling control. Simultaneously, the proteins and polysaccharide (PS) concentrations in the MBR supernatant were analyzed, and the PS concentration significantly decreased to 2.02 mg/L at aluminum sulfate of 30 mg/L, indicating the flocculation of aluminum sulfate on PS was the main reason for mitigation of membrane fouling.


2012 ◽  
Vol 65 (4) ◽  
pp. 737-742 ◽  
Author(s):  
V. Wei ◽  
M. Elektorowicz ◽  
J. A. Oleszkiewicz

Thousands of sparsely populated communities scatter in the remote areas of northern Canada. It is economically preferable to adopt the decentralized systems to treat the domestic wastewater because of the vast human inhabitant distribution and cold climatic conditions. Electro-technologies such as electrofiltration, elctrofloatation, electrocoagulation and electrokinetic separation have been applied in water and conventional wastewater treatment for decades due to the minimum requirements of chemicals as well as ease of operation. The membrane bioreactor (MBR) is gaining popularity in recent years as an alternative water/wastewater treatment technology. However, few studies have been conducted to hyphenate these two technologies. The purpose of this work is to design a novel electrically enhanced membrane bioreactor (EMBR) as an alternative decentralized wastewater treatment system with improved nutrient removal and reduced membrane fouling. Two identical submerged membranes (GE ZW-1 hollow fiber module) were used for the experiment, with one as a control. The EMBR and control MBR were operated for 4 months at room temperature (20 ± 2 °C) with synthetic feed and 2 months at 10 °C with real sewage. The following results were observed: (1) the transmembrane pressure (TMP) increased significantly more slowly in the EMBR and the interval between the cleaning cycles of the EMBR increased at least twice; (2) the dissolved chemical oxygen demand (COD) or total organic carbon (TOC) in the EMBR biomass was reduced from 30 to 51%, correspondingly, concentrations of the extracellular polymeric substances (EPS), the major suspicious membrane foulants, decreased by 26–46% in the EMBR; (3) both control and EMBR removed >99% of ammonium-N and >95% of dissolved COD, in addition, ortho-P removal in the EMBR was >90%, compared with 47–61% of ortho-P removal in the MBR; and (4) the advantage of the EMBR over the conventional MBR in terms of membrane fouling retardation and phosphorus removal was further demonstrated at an operating temperature of 10 °C when fed with real sewage. The EMBR system has the potential for highly automated control and minimal maintenance, which is particularly suitable for remote northern applications.


2015 ◽  
Vol 72 (4) ◽  
pp. 528-534 ◽  
Author(s):  
Yang Bai ◽  
Xie Quan ◽  
Yaobin Zhang ◽  
Shuo Chen

A University of Cape Town process coupled with integrated fixed biofilm and activated sludge system was modified by bypass flow strategy (BUCT–IFAS) to enhance nitrogen and phosphorus removal from the wastewater containing insufficient carbon source. This process was operated under different bypass flow ratios (λ were 0, 0.4, 0.5, 0.6 and 0.7, respectively) to investigate the effect of different operational modes on the nitrogen (N) and phosphorus (P) removal efficiency (λ = 0 was noted as common mode, other λ were noted as bypass flow mode), and optimizing the N and P removal efficiency by altering the λ. Results showed that the best total nitrogen (TN) and total phosphorus (TP) removal performances were achieved at λ of 0.6, the effluent TN and TP averaged 14.0 and 0.4 mg/L meeting discharge standard (TN < 15 mg/L, TP < 0.5 mg/L). Correspondingly, the TN and TP removal efficiencies were 70% and 94%, respectively, which were 24 and 41% higher than those at λ of 0. In addition, the denitrification and anoxic P-uptake rates were increased by 23% and 23%, respectively, compared with those at λ of 0. These results demonstrated that the BUCT–IFAS process was an attractive method for enhancing nitrogen and phosphorus removal from wastewater containing insufficient carbon source.


Sign in / Sign up

Export Citation Format

Share Document