scholarly journals Pervaporative Dehydration of Methanol Using PVA/Nanoclay Mixed Matrix Membranes: Experiments and Modeling

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 435
Author(s):  
Asmaa Selim ◽  
András Jozsef Toth ◽  
Daniel Fozer ◽  
Agnes Szanyi ◽  
Péter Mizsey

Encouraged by the industrial problem of removing water from methanol solutions, a simple exfoliation method is applied to prepare polyvinyl alcohol (PVA)/laponite nanoclay mixed matrix membranes (MMMs). The membranes are used for the pervaporative dehydration of the methanol-water solution. The influence of the nanoclay content on the pervaporation performance is investigated. The results show that the PVA10 membrane containing 10 wt% Laponite loading exhibits excellent separation efficiency; therefore, all the experimental work is continued using the same membrane. Additionally, the effects of feed concentration and temperature on methanol dehydration performance are thoroughly investigated. The temperatures are ranging from 40–70 °C and the water feed concentrations from 1–15 wt% water. A maximum separation factor of 1120 can be observed at 40 °C and the feed water concentration of 1 wt%. Remarkably, two solution–diffusion models, the Rautenbach (Model I) and modified method by Valentínyi et al. (Model II), are used and compared to evaluate and describe the pervaporation performance of the mixed matrix membrane. Model II proves to be more appropriate for the modeling of pervaporative dehydration of methanol than Model I. This work demonstrates that PVA/nanoclay mixed matrix membranes prepared can efficiently remove water from methanol aqueous solution with pervaporation and the whole process can be accurately modeled with Model II.

REAKTOR ◽  
2008 ◽  
Vol 12 (2) ◽  
pp. 68 ◽  
Author(s):  
Tutuk Djoko Kusworo ◽  
Ahmad Fauzi Ismail ◽  
Azeman Mustafa ◽  
Kang Li

The permeation rates of O2, N2, CO2 and CH4 has been studied for polyimide-polyethersulfone (PI/PES) blends-zeolite mixed matrix membranes synthesized in our laboratory. The study investigated the effect of zeolite loading and different zeolite type on the gas separation performance of these mixed matrix membranes. Frequency shifts and absorption intensity changes in the FTIR spectra of the PI/PES blends as compared with those of the pure polymers indicate that there is a mixing of polymer blends at the molecular level. Differential scanning calorimetry measurements of pure and PI/PES blends membranes have showed one unique glass transition temperature that supports the miscible character of the PI/PES mixture. The PI/PES-zeolite 4A mixed matrix membrane with 25 wt % zeolite loading produced the highest O2/N2 and CO2/CH4 selectivity of around 7.45 and 46.05, respectively.


RSC Advances ◽  
2015 ◽  
Vol 5 (36) ◽  
pp. 28394-28400 ◽  
Author(s):  
Yunpan Ying ◽  
Yuanlong Xiao ◽  
Jing Ma ◽  
Xiangyu Guo ◽  
Hongliang Huang ◽  
...  

Mixed matrix membrane containing ZIF-7 exhibits the excellent performance in the recovery of acetone from fermentation broths.


RSC Advances ◽  
2019 ◽  
Vol 9 (27) ◽  
pp. 15542-15553 ◽  
Author(s):  
Mohammad Salehi Maleh ◽  
Ahmadreza Raisi

A functional moderate selective layer mixed matrix membrane (F-MSL-MMM) is a promising candidate to obtain superior separation of industrial gases, compared to commonly mixed matrix membranes.


Author(s):  
Z. Jamian ◽  
M. H. Tajuddin ◽  
N. Yusof ◽  
F. E. Che Othman

This study was performed primarily to investigate the effect of activated carbon nanofiber (ACNF) on carbon dioxide and methane separation performance of mixed matrix membrane (MMM). In this study, polysulfone (PSf)/ACNF mixed matrix membranes was fabricated using dry/wet inversion technique. The effect of PSf concentration and ACNF loading on the performance of mixed matrix membrane in terms of permeability and selectivity of CO2/CH4 gas separation was observed. The fabricated flat sheet mixed matrix membranes were characterized using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) analysis. From the SEM observations, it shows that sponge like structures images were observed upon the addition of ACNFs in the PSf/ACNF membranes was slowly decreased due to increasing weight percentage of ACNF. FT-IR result indicating the presence of carboxyl group in MMM at wavelength 1750 cm-1. Meanwhile, the MMMs were further tested to pure permeation test using pure CO2 and CH4 gas, the CO2 permeance improved and the selectivity of CO2/CH4 increased after the addition of ACNFs. 


2017 ◽  
Vol 77 (2) ◽  
pp. 346-354 ◽  
Author(s):  
Pourya Moradihamedani ◽  
Abdul Halim Abdullah

Abstract Removal of low-concentration ammonia (1–10 ppm) from aquaculture wastewater was investigated via polysulfone (PSf)/zeolite mixed matrix membrane. PSf/zeolite mixed matrix membranes with different weight ratios (90/10, 80/20, 70/30 and 60/40 wt.%) were prepared and characterized. Results indicate that PSf/zeolite (80/20) was the most efficient membrane for removal of low-concentration ammonia. The ammonia elimination by PSf/zeolite (80/20) from aqueous solution for 10, 7, 5, 3 and 1 ppm of ammonia was 100%, 99%, 98.8%, 96% and 95% respectively. The recorded results revealed that pure water flux declined in higher loading of zeolite in the membrane matrix due to surface pore blockage caused by zeolite particles. On the other hand, ammonia elimination from water was decreased in higher contents of zeolite because of formation of cavities and macrovoids in the membrane substructure.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 557
Author(s):  
Tawsif Siddique ◽  
Naba K. Dutta ◽  
Namita Roy Choudhury

In recent years, technology for the fabrication of mixed-matrix membranes has received significant research interest due to the widespread use of mixed-matrix membranes (MMMs) for various separation processes, as well as biomedical applications. MMMs possess a wide range of properties, including selectivity, good permeability of desired liquid or gas, antifouling behavior, and desired mechanical strength, which makes them preferable for research nowadays. However, these properties of MMMs are due to their tailored and designed structure, which is possible due to a fabrication process with controlled fabrication parameters and a choice of appropriate materials, such as a polymer matrix with dispersed nanoparticulates based on a typical application. Therefore, several conventional fabrication methods such as a phase-inversion process, interfacial polymerization, co-casting, coating, electrospinning, etc., have been implemented for MMM preparation, and there is a drive for continuous modification of advanced, easy, and economic MMM fabrication technology for industrial-, small-, and bulk-scale production. This review focuses on different MMM fabrication processes and the importance of various parameter controls and membrane efficiency, as well as tackling membrane fouling with the use of nanomaterials in MMMs. Finally, future challenges and outlooks are highlighted.


2021 ◽  
Vol 8 (9) ◽  
pp. 210660
Author(s):  
Adelaida Perea-Cachero ◽  
Miren Etxeberría-Benavides ◽  
Oana David ◽  
Adam Deacon ◽  
Timothy Johnson ◽  
...  

Polybenzimidazole (PBI) is a promising and suitable membrane polymer for the separation of the H 2 /CO 2 pre-combustion gas mixture due to its high performance in terms of chemical and thermal stability and intrinsic H 2 /CO 2 selectivity. However, there is a lack of long-term separation studies with this polymer, particularly when it is conformed as hollow fibre membrane. This work reports the continuous measurement of the H 2 /CO 2 separation properties of PBI hollow fibres, prepared as mixed matrix membranes with metal-organic framework (MOF) ZIF-8 as filler. To enhance the scope of the experimental approach, ZIF-8 was synthesized from the transformation of ZIF-L upon up-scaling the MOF synthesis into a 1 kg batch. The effects of membrane healing with poly(dimethylsiloxane), to avoid cracks and non-selective gaps, and operation conditions (use of sweep gas or not) were also examined at 200°C during approximately 51 days. In these conditions, for all the membrane samples studied, the H 2 permeance was in the 22–47 GPU range corresponding to 22–32 H 2 /CO 2 selectivity values. Finally, this work continues our previous report on this type of application (Etxeberria-Benavides et al . 2020 Sep. Purif. Technol. 237 , 116347 ( doi:10.1016/j.seppur.2019.116347 )) with important novelties dealing with the use of ZIF-8 for the mixed matrix membrane coming from a green methodology, the long-term gas separation testing for more than 50 days and the study on the membrane operation under more realistic conditions (e.g. without the use of sweep gas).


2015 ◽  
Vol 3 (29) ◽  
pp. 15241-15247 ◽  
Author(s):  
Melanie Kitchin ◽  
Jesse Teo ◽  
Kristina Konstas ◽  
Cher Hon Lau ◽  
Christopher J. Sumby ◽  
...  

The effect of controlling interactions between the components in a mixed-matrix membrane at the molecular level has been explored.


2021 ◽  
pp. 119390
Author(s):  
Ju Ho Shin ◽  
Ming-Yang Kan ◽  
Jin-Woo Oh ◽  
Hyun Jung Yu ◽  
Li-Chiang Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document