scholarly journals Lactic Acid and Salt Separation Using Membrane Technology

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Sahar Talebi ◽  
Michael Garthe ◽  
Florian Roghmans ◽  
George Q. Chen ◽  
Sandra E. Kentish

Acid whey is a by-product of cheese and yoghurt manufacture. The protein and lactose within acid whey can be recovered using nanofiltration and electrodialysis, but this leaves a waste stream that is a mixture of salts and lactic acid. To further add value to the acid whey treatment process, the possibility of recovering this lactic acid was investigated using either low energy reverse osmosis membranes or an electrodialysis process. Partial separation between lactic acid and potassium chloride was achieved at low applied pressures and feed pH in the reverse osmosis process, as a greater permeation of potassium chloride was observed under these conditions. Furthermore, lactic acid retention was enhanced by operating at lower temperature. Partial separation between lactic acid and potassium chloride was also achieved in the electrodialysis process. However, the observed losses in lactic acid increased with the addition of sodium chloride to the feed solution. This indicates that the separation becomes more challenging as the complexity of the feed solution increases. Neither process was able to achieve sufficient separation to avoid the use of further purification processes.

1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


Biosensors ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 62 ◽  
Author(s):  
Angie R. Eldamak ◽  
Sarah Thorson ◽  
Elise C. Fear

Analysis of sweat is of interest for a variety of diagnosis and monitoring applications in healthcare. In this work, detailed measurements of the dielectric properties of solutions representing the major components of sweat are presented. The measurements include aqueous solutions of sodium chloride (NaCl), potassium chloride (KCl), urea, and lactic acid, as well as their mixtures. Moreover, mixtures of NaCl, KCl, urea, and lactic acid, mimicking artificial sweat at different hydration states, are characterized, and the data are fitted to a Cole–Cole model. The complex dielectric permittivity for all prepared solutions and mixtures is studied in the range of 1–20 GHz, at temperature of 23 °C, with ionic concentrations in the range of 0.01–1.7 mol/L.


2018 ◽  
Vol 24 (2) ◽  
pp. 179-190
Author(s):  
Natnirin Phanthumchinda ◽  
Tanapawarin Rampai ◽  
Budsabathip Prasirtsak ◽  
Sitanan Thitiprasert ◽  
Somboon Tanasupawat ◽  
...  

Brackish water reverse osmosis (BWRO) and seawater reverse osmosis (SWRO) membranes were used in a two-stage reverse osmosis (RO) unit to recover, pre-purify, and pre-concentrate lactic acid. Calcium lactate, sodium lactate, and ammonium lactate were used as model feed solutions. The operating pressure showed a pronounced effect on lactate passage through the first BWRO unit, and the Donnan exclusion effect and hydrogen bonding were responsible for cation rejection. Calcium ions were rejected at the BWRO unit because of low diffusion rate and charge interaction at the surface. However, monovalent ions formed hydrogen bonds with the carbonyl group of the membrane that allowed passage across the membrane. The second SWRO unit was for pre-concentrating lactic acid. A high lactate purity of 99.2% with a total recovery of 50.5% was acquired from calcium lactate feed solution. Lower purity with higher lactate recovery was obtained when the feed solution was sodium lactate and ammonium lactate. When the actual fermentation broth was used in the two-stage RO unit, a slightly lower recovery and purity of lactic acid were obtained. It was claimed that the total ions present in the fermentation broth were responsible for the low efficiency of the two-stage RO unit.


1981 ◽  
Vol 46 (12) ◽  
pp. 3104-3109 ◽  
Author(s):  
Miroslav Ludwig ◽  
Oldřich Pytela ◽  
Miroslav Večeřa

Rate constants of non-catalyzed hydrolysis of 3-acetyl-1,3-diphenyltriazene (I) and 3-(N-methylcarbamoyl)-1,3-diphenyltriazene (II) have been measured in the presence of salts (ammonium chloride, potassium chloride, lithium chloride, sodium chloride and bromide, ammonium sulphate, potassium sulphate, lithium sulphate, sodium sulphate and zinc sulphate) within broad concentration ranges. Temperature dependence of the hydrolysis of the substrates studied has been measured in the presence of lithium sulphate within temperature range 20° to 55 °C. The results obtained have been interpreted by mechanisms of hydrolysis of the studied substances.


2019 ◽  
Vol 118 ◽  
pp. 04009
Author(s):  
Yuan Li ◽  
Jie Liu ◽  
Yibiao Yu ◽  
Hao Zhu ◽  
Zheng Shen ◽  
...  

A more detailed occurrence features of organic matters in the printing and dyeing wastewater, based on its particle size distribution (PSD) and along with a wastewater treatment process, was conducted to provide a support for advanced treatment. Results suggested that, (1) In the dyeing wastewater, the occurrence characteristic of COD was: soluble>supra colloidal>colloidal>settleable; However, for protein, the supra colloidal was dominant, followed by the soluble. The feature of the polysaccharide was consistent with COD’s. In the wastewater, 29.66% of COD could be attributed to proteins and 3.45% of the COD could be attributed to polysaccharides. (2) The relationship among the forms of COD in the primary sedimentation tank, aerobic tank, secondary sedimentation tank, and reverse osmosis-treated concentrated effluent was consistent, that was: soluble>colloidal>supra colloidal>settleable. (3) In the primary sedimentation tank, the settleable COD was almost completely removed; In the aerobic tank, the residual super colloidal COD was not much; After MBR-RO treatment, the COD in the reverse osmosis concentrated water was almost dissolved and only a little presented in other forms.


Sign in / Sign up

Export Citation Format

Share Document