scholarly journals Recuperative Amino Acids Separation through Cellulose Derivative Membranes with Microporous Polypropylene Fiber Matrix

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 429
Author(s):  
Aurelia Cristina Nechifor ◽  
Andreia Pîrțac ◽  
Paul Constantin Albu ◽  
Alexandra Raluca Grosu ◽  
Florina Dumitru ◽  
...  

The separation, concentration and transport of the amino acids through membranes have been continuously developed due to the multitude of interest amino acids of interest and the sources from which they must be recovered. At the same time, the types of membranes used in the sepa-ration of the amino acids are the most diverse: liquids, ion exchangers, inorganic, polymeric or composites. This paper addresses the recuperative separation of three amino acids (alanine, phe-nylalanine, and methionine) using membranes from cellulosic derivatives in polypropylene ma-trix. The microfiltration membranes (polypropylene hollow fibers) were impregnated with solu-tions of some cellulosic derivatives: cellulose acetate, 2-hydroxyethyl-cellulose, methyl 2-hydroxyethyl-celluloseand sodium carboxymethyl-cellulose. The obtained membranes were characterized in terms of the separation performance of the amino acids considered (retention, flux, and selectivity) and from a morphological and structural point of view: scanning electron microscopy (SEM), high resolution SEM (HR-SEM), Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS) and thermal gravimetric analyzer (TGA). The re-sults obtained show that phenylalanine has the highest fluxes through all four types of mem-branes, followed by methionine and alanine. Of the four kinds of membrane, the most suitable for recuperative separation of the considered amino acids are those based on cellulose acetate and methyl 2-hydroxyethyl-cellulose.

The results of experimental studies of masonry on the action of dynamic and static (short-term and long-term) loads are presented. The possibility of plastic deformations in the masonry is analyzed for different types of force effects. The falsity of the proposed approach to the estimation of the coefficient of plasticity of masonry, taking into account the ratio of elastic and total deformations of the masonry is noted. The study of the works of Soviet scientists revealed that the masonry under the action of seismic loads refers to brittle materials in the complete absence of plastic properties in it in the process of instantaneous application of forces. For the cases of uniaxial and plane stress states of the masonry, data on the coefficient of plasticity obtained from the experiment are presented. On the basis of experimental studies the influence of the strength of the so-called base materials (brick, mortar) on the bearing capacity of the masonry, regardless of the nature of the application of forces and the type of its stress state, is noted. The analysis of works of prof. S. V. Polyakov makes it possible to draw a conclusion that at the long application of the load, characteristic for the masonry are not plastic deformations, but creep deformations. It is shown that the proposals of some authors on the need to reduce the level of adhesion of the mortar to the brick for the masonry erected in earthquake-prone regions in order to improve its plastic properties are erroneous both from the structural point of view and from the point of view of ensuring the seismic resistance of structures. It is noted that the proposal to assess the plasticity of the masonry of ceramic brick walls and large-format ceramic stone with a voidness of more than 20% is incorrect, and does not meet the work of the masonry of hollow material. On the basis of the analysis of a large number of research works it is concluded about the fragile work of masonry.


2020 ◽  
Vol 15 (1-3) ◽  
pp. 44-59
Author(s):  
Lidia Peneva

Crimes against marriage and family are a particular group of social relation­ships that the law has defended properly in view of the high public significance and value they enjoy. At the moment they are regulated in Chapter VI, Section I, of the specific part of the Penal Code the Repub­lic of Bulgaria. The subject matter of this Statement will, however, be the legisla­tive provisions concerning these criminal­ized acts in retrospect. The purpose of the study is to show by historical method and through the comparatively legal method the development of these criminal groups during the periods of various criminal laws in Bulgaria. This will also provide a basis for reflection on possible de lege ferenda proposals. This report from a structural point of view will be divided into three distinct points, marking each of the penal laws in the Republic of Bulgaria, which were in force before 1968.


2020 ◽  
Vol 71 (8) ◽  
pp. 21-26
Author(s):  
Elena-Emilia Oprescu ◽  
Cristina-Emanuela Enascuta ◽  
Elena Radu ◽  
Vasile Lavric

In this study, the SO42-/TiO2-La2O3-Fe2O3 catalyst was prepared and tested in the conversion of fructose to ethyl levulinate . The catalyst was characterized from the point of view of the textural analysis, FT-IR analysis, acid strength distribution, X-ray powder diffraction and pyridine adsorption IR spectra. The influence of the reaction parameters on the ethyl levulinate yield was study. The maximum yield of 37.95% in levulinate esters was obtained at 180 �C, 2 g catalyst and 4 h reaction time. The effect of ethyl levulinate addition to diesel-biodiesel blend in different rates, i.e, 0.5, 1, 2.5, 5 (w.t %) on density, kinematic viscosity and flash point was evaluated and compared with the European specification.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Cristian Privat ◽  
Sergio Madurga ◽  
Francesc Mas ◽  
Jaime Rubio-Martínez

Solvent pH is an important property that defines the protonation state of the amino acids and, therefore, modulates the interactions and the conformational space of the biochemical systems. Generally, this thermodynamic variable is poorly considered in Molecular Dynamics (MD) simulations. Fortunately, this lack has been overcome by means of the Constant pH Molecular Dynamics (CPHMD) methods in the recent decades. Several studies have reported promising results from these approaches that include pH in simulations but focus on the prediction of the effective pKa of the amino acids. In this work, we want to shed some light on the CPHMD method and its implementation in the AMBER suitcase from a conformational point of view. To achieve this goal, we performed CPHMD and conventional MD (CMD) simulations of six protonatable amino acids in a blocked tripeptide structure to compare the conformational sampling and energy distributions of both methods. The results reveal strengths and weaknesses of the CPHMD method in the implementation of AMBER18 version. The change of the protonation state according to the chemical environment is presumably an improvement in the accuracy of the simulations. However, the simulations of the deprotonated forms are not consistent, which is related to an inaccurate assignment of the partial charges of the backbone atoms in the CPHMD residues. Therefore, we recommend the CPHMD methods of AMBER program but pointing out the need to compare structural properties with experimental data to bring reliability to the conformational sampling of the simulations.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 411
Author(s):  
Irena Zizovic ◽  
Marcin Tyrka ◽  
Konrad Matyja ◽  
Ivana Moric ◽  
Lidija Senerovic ◽  
...  

This study investigates the modification of commercial cellulose acetate microfiltration membranes by supercritical solvent impregnation with thymol to provide them with antibacterial properties. The impregnation process was conducted in a batch mode, and the effect of pressure and processing time on thymol loading was followed. The impact of the modification on the membrane’s microstructure was analyzed using scanning electron and ion-beam microscopy, and membranes’ functionality was tested in a cross-flow filtration system. The antibiofilm properties of the obtained materials were studied against Staphyloccocus aureus and Pseudomonas aeruginosa, while membranes’ blocking in contact with bacteria was examined for S. aureus and Escherichia coli. The results revealed a fast impregnation process with high thymol loadings achievable after just 0.5 h at 15 MPa and 20 MPa. The presence of 20% of thymol provided strong antibiofilm properties against the tested strains without affecting the membrane’s functionality. The study showed that these strong antibacterial properties could be implemented to the commercial membranes’ defined polymeric structure in a short and environmentally friendly process.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Milan Melnik ◽  
Peter Mikuš ◽  
Clive E. Holloway

AbstractThis review classifies and analyzes over fifty heterohepta- and heterooctanuclear platinum clusters. There are eight types of metal combinations in heteroheptanuclear: Pt6M, Pt5M2, Pt4M3, Pt3M4, Pt2M5, PtM6, Pt3Hg2Ru2 and Pt2Os3Fe2. The seven metal atoms are in a wide variety of arrangements, with the most common being one in which the central M atom (mostly M(I)) is sandwiched by two M3 triangles. Another arrangement often found is an octahedron of M6 atoms asymmetrically capped by an M atom. The shortest Pt-M bond distances (non-transition and transition) are 2.326(1) Å (M = Ga) and 2.537(6) Å (M = Fe). The shortest Pt-Pt bond distance is 2.576(2) Å.In heterooctanuclear platinum clusters there are eight types of metal combinations: Pt6M2, Pt4M4, Pt3Ru5, Pt2M6, PtM7, Pt2W4Ni2, PtAu6Hg and PtAu5Hg2. From a structural point of view, the clusters are complex with bicapped octahedrons of eight metal atoms prevailing. The shortest Pt-M bond distances (non-transition and transition) are 2.651(3) Å (M = Hg) and 2.624(1) Å (M = Os). The shortest Pt-Pt bond distance is 2.622(1) Å. These values are somewhat longer than those in the heteroheptanuclear clusters. Several relationships between the structural parameters were found, and are discussed and compared with the smaller heterometallic platinum clusters


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Harshita Sachdeva ◽  
Diksha Dwivedi ◽  
Rekha Saroj

Alum (KAl(SO4)2·12H2O) is an inexpensive, efficient, and nontoxic catalyst used for the synthesis of 2-[3-amino-5-methyl-5-(pyridin-3-yl)-1,5-dihydro-4H-1,2,4-triazol-4-yl]propanoic acid derivatives in aqueous media by the reaction of 3-acetyl pyridine(1), amino acids(2)/(6), and thiosemicarbazide(4)at 80°C. This methodology offers significant improvements for the synthesis of products with regards to the yield of products, simplicity in operation, and green aspects by avoiding toxic catalysts which uphold the motto of green chemistry. Synthesized compounds have been characterized by FT-IR,13C NMR, and1HNMR spectroscopy.


2011 ◽  
Vol 63 (8) ◽  
pp. 1695-1700 ◽  
Author(s):  
J. H. Lv ◽  
G. M. Xiao

Cellulose acetate/ polyacrylonitrile (CA/PAN) membranes were prepared and used to separate pyridine / water mixtures by pervaporation. The membranes were characterized through SEM. The effects of feed concentration, operation temperature and downstream pressure on the separation performance were evaluated. Experimental results indicated the increase of operation temperature could raise the permeation flux and the separation factor, while increasing feed concentration and downstream pressure would raise the separation factor and decrease the permeation flux. Under the conditions that pyridine solution was 99 wt.%, operation temperature was 323 K and downstream pressure was 20 mmHg, the CA/PAN blend membrane showed its best separation performance that the permeation flux was 56 · g · m−2 h−1 and the separation factor was 182.


Author(s):  
Maksim Vladimirovich Shpagin ◽  
Mikhail Valerievich Kolesnikov ◽  
Olga Yurievna Khutorskaya ◽  
Dmitriy Evgenievich Timoshkin ◽  
Artem Andreevich Belikin ◽  
...  

From the informational and structural point of view, the chronicity of pain is associated with the migration of nociogenic zones. The phenomenon of migration is based on the mechanisms of neuroplasticity, compensatory-restorative processes in the nervous system. On the basis of the phenomenon of migration of the nociogenic zone, a system of regional integrative therapy of chronic pain syndrome has been developed. Recommendations on the advisability of invasive shutdown of the nociogenic zone using invasive pharmacotherapy or surgical denervation have been proposed. In the course of studying the characteristics of chronic pain, depending on the duration of the disease, a direct proportional correlation was revealed between the increase in the components of pain and the duration of the pain syndrome, which can be explained by the increase in the number of nociogenic structures that form the complexity and stability of the pain syndrome. Thus, the necessity of neurodestructive interventions increases for attaining positive results. An important area of therapy is the inclusion of psychotherapy, pharmacotherapy and neuromodulation into the system of regional-integrative influence.


Sign in / Sign up

Export Citation Format

Share Document