scholarly journals Recovery of Biologically Treated Textile Wastewater by Ozonation and Subsequent Bipolar Membrane Electrodialysis Process

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 900
Author(s):  
Burak Yuzer ◽  
Huseyin Selcuk

The Bipolar Membrane Electrodialysis process (BPMED) can produce valuable chemicals such as acid (HCl, H2SO4, etc.) and base (NaOH) from saline and brackish waters under the influence of an electrical field. In this study, BPMED was used to recover wastewater and salt in biologically treated textile wastewater (BTTWW). BPMED process, with and without pre-treatment (softening and ozonation), was evaluated under different operational conditions. Water quality parameters (color, remaining total organic carbon, hardness, etc.) in the acid, base and filtrated effluents of the BPMED process were evaluated for acid, base, and wastewater reuse purposes. Ozone oxidation decreased 90% of color and 37% of chemical oxygen demand (COD) in BTTWW. As a result, dye fouling on the anion exchange membrane of the BPMED process was reduced. Subsequently, over 90% desalination efficiency was achieved in a shorter period. Generated acid, base, and effluent wastewater of the BPMED process were found to be reusable in wet textile processes. Results indicated that pre-ozonation and subsequent BPMED membrane systems might be a promising solution in converging to a zero discharge approach in the textile industry.

1999 ◽  
Vol 40 (4-5) ◽  
pp. 99-105 ◽  
Author(s):  
A. Lopez ◽  
G. Ricco ◽  
R. Ciannarella ◽  
A. Rozzi ◽  
A. C. Di Pinto ◽  
...  

Among the activities appointed by the EC research-project “Integrated water recycling and emission abatement in the textile industry” (Contract: ENV4-CT95-0064), the effectiveness of ozone for improving the biotreatability of recalcitrant effluents as well as for removing from them toxic and/or inhibitory pollutants has been evaluated at lab-scale. Real membrane concentrates (pH=7.9; TOC=190 ppm; CDO=595 ppm; BOD5=0 ppm; Conductivity=5,000 μS/cm; Microtox-EC20=34%) produced at Bulgarograsso (Italy) Wastewater Treatment Plant by nanofiltering biologically treated secondary textile effluents, have been treated with ozonated air (O3conc.=12 ppm) over 120 min. The results have indicated that during ozonation, BOD5 increases from 0 to 75 ppm, whereas COD and TOC both decrease by about 50% and 30 % respectively. As for potentially toxic and/or inhibitory pollutants such as dyes, nonionic surfactants and halogenated organics, all measured as sum parameters, removals higher than 90% were achieved as confirmed by the complete disappearance of acute toxicity in the treated streams. The only ozonation byproducts searched for and found were aldehydes whose total amount continuously increased in the first hour from 1.2 up to 11.8 ppm. Among them, formaldehyde, acetaldehyde, glyoxal, propionaldehyde, and butyraldehyde were identified by HPLC.


Author(s):  
Mehrangiz Pourgholi ◽  
Reza Masoomi Jahandizi ◽  
Mohammadbagher Miranzadeh ◽  
Ommolbanin Hassan Beigi ◽  
Samaneh Dehghan

Introduction: Textile industry effluent is a complex sewage with chemical and color materials that is discharged into the environment and can cause serious problems. In this way using advanced oxidation methods and finding the best methods for removing color materials is necessary. An experimental method was done on Kashan textile industry effluent in laboratory scale and batch system. Material and Methods: Initially, optimal condition was obtained for O3 and H2O2 and followed by advanced oxidation methods (UV/O3, UV/H2O2, O3/H2O2 and UV/H2O2/O3) in different reaction times and pH on dye removal and COD (chemical oxygen demand) were determined. The results were compared with complex repetition method. Results: The results of this research showed that dye removal impact and COD based on the type of process and reaction time in UV/H2O2/O3 by 30 minute time duration, was the most effective method. UV/H2O2 in 10 minute time duration was the least effective method. COD and color removal, based on the process in UV/H2O2/O3 and pH = 6 was the most effective. The effect of UV/H2O2 and pH = 4 was the least efficient method on dye material removing. Results showed that the treatment time was effective on color removing (P < 0/001) statistically. Conclusion: It can be concluded that UV/H2O2/O3 was the most efficient on color removing process, compared to the others, due to co-incidence presence of strongly numerous oxidants and their aggravating effect through producing active hydroxyl radicals (OH˚).


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1306
Author(s):  
Xuefei Yang ◽  
Víctor López-Grimau ◽  
Mercedes Vilaseca ◽  
Martí Crespi

In this study, three different biological methods—a conventional activated sludge (CAS) system, membrane bioreactor (MBR), and moving bed biofilm reactor (MBBR)—were investigated to treat textile wastewater from a local industry. The results showed that technically, MBR was the most efficient technology, of which the chemical oxygen demand (COD), total suspended solids (TSS), and color removal efficiency were 91%, 99.4%, and 80%, respectively, with a hydraulic retention time (HRT) of 1.3 days. MBBR, on the other hand, had a similar COD removal performance compared with CAS (82% vs. 83%) with halved HRT (1 day vs. 2 days) and 73% of TSS removed, while CAS had 66%. Economically, MBBR was a more attractive option for an industrial-scale plant since it saved 68.4% of the capital expenditures (CAPEX) and had the same operational expenditures (OPEX) as MBR. The MBBR system also had lower environmental impacts compared with CAS and MBR processes in the life cycle assessment (LCA) study, since it reduced the consumption of electricity and decolorizing agent with respect to CAS. According to the results of economic and LCA analyses, the water treated by the MBBR system was reused to make new dyeings because water reuse in the textile industry, which is a large water consumer, could achieve environmental and economic benefits. The quality of new dyed fabrics was within the acceptable limits of the textile industry.


2021 ◽  
Vol 217 ◽  
pp. 91-100
Author(s):  
Wenqiao Meng ◽  
Guohui Wang ◽  
Meng Zhang ◽  
Dong Wan ◽  
Na Song ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3034
Author(s):  
Muhammad Mubashar ◽  
Muhammad Naveed ◽  
Adnan Mustafa ◽  
Sobia Ashraf ◽  
Khurram Shehzad Baig ◽  
...  

The present study evaluated the performance of microalgae Chlorella vulgaris in an Enterobacter sp. MN17-assisted textile industry wastewater treatment system for decolorization, removal of heavy metals (Cu, Cr, Pb, and Cd), and chemical oxygen demand (COD). Different dilutions (5, 10, and 20%) of wastewater were prepared to decrease the pollutant toxicity for culturing microalgae and bacteria. Reduction of color, COD, and metal contents by microalgal treatment of wastewater varied greatly, while removal efficiency (RE) was significantly enhanced when endophytic bacterial strain MN17 inoculum was applied. Most notable, results were found at a 5% dilution level by Enterobacter sp. MN17-inoculated C. vulgaris medium, as chromium (Cr), cadmium (Cd), copper (Cu), and lead (Pb) concentrations were decreased from 1.32 to 0.27 mg L−1 (79% decrease), 0.79–0.14 mg L−1 (93% decrease), 1.33–0.36 mg L−1 (72% decrease), and 1.2–0.25 mg L−1 (79% decrease), respectively. The values of COD and color were also significantly decreased by 74% and 70%, respectively, by a C. vulgaris–Enterobacter sp. MN17 consortium. The present investigation revealed that bacterial inoculation of microalgae significantly enhanced the removal of coloring agents and heavy metals from textile wastewater by stimulating the growth of algal biomass. This study manifested the usefulness of microalgae–bacterial mutualism for the remediation of heavy metals, COD, and color in industrial effluents. Microalgae consortia with growth promoting bacteria could be a breakthrough for better bioremediation and bioprocess economy. Thus, further studies are needed for successful integration of microalgae–plant growth promoting bacterial (PGPB) consortium for wastewater treatments.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1070 ◽  
Author(s):  
Alexsandro Jhones dos Santos ◽  
Luana Márcia Bezerra Batista ◽  
Carlos Alberto Martínez-Huitle ◽  
Ana Paula de Melo Alves ◽  
Sergi Garcia-Segura

Niobium-based metal oxides are emerging semiconductor materials with barely explored properties for photocatalytic wastewater remediation. Brazil possesses the greatest reserves of niobium worldwide, being a natural resource that is barely exploited. Environmental applications of solar active niobium photocatalysts can provide opportunities in the developing areas of Northeast Brazil, which receives over 22 MJ m2 of natural sunlight irradiation annually. The application of photocatalytic treatment could incentivize water reuse practices in small and mid-sized textile businesses in the region. This work reports the facile synthesis of Nb2O5 catalysts and explores their performance for the treatment of colored azo dye effluents. The high photoactivity of this alternative photocatalyst makes it possible to quickly obtain complete decolorization, in less than 40 min of treatment. The optimal operational conditions are defined as 1.0 g L−1 Nb2O5 loading in slurry, 0.2 M of H2O2, pH 5.0 to treat up to 15 mg L−1 of methyl orange solution. To evaluate reutilization without photocatalytic activity loss, the Nb2O5 was recovered after the experience and reused, showing the same decolorization rate after several cycles. Therefore, Nb2O5 appears to be a promising photocatalytic material with potential applicability in wastewater treatment due to its innocuous character and high stability.


2017 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Ines Burgos-Lujan ◽  
Anthony Zhaoguo Tong

Bean sprout production consumes a significant volume of municipal water and generates a similar amount of wastewater. Water costs become a serious concern for this food industry, therefore wastewater reuse is highly desired by many sprout producers. Bean sprout wastewater has a relatively low level of contamination, which gives a great potential for reuse. The objective of this study was to exam the treatment feasibility of sprout production wastewater using a membrane bioreactor. Real-world wastewater from a sprout producer was treated continuously for 35 days. Important water quality parameters were monitored closely including chemical oxygen demand (COD), ammonia, tannins, pH, total suspended solids (TSS), etc. Once the biological system was stabilized, the MBR’s effluent showed very low level of COD, ammonia, TSS and bacteria, which demonstrated that the reuse of sprout wastewater is achievable.


2020 ◽  
Vol 82 (7) ◽  
pp. 1467-1483
Author(s):  
Hanumanthappa Srikantha ◽  
Mahesh Shivaswamy ◽  
Sahana Mahesh

Abstract Copper and stainless steel electrodes were used in batch electrochemical coagulation (BECC) for the treatment of real textile wastewater using 16 electrode combinations. Out of 16 Cu-SS and SS-Cu combinations (eight combinations each), only 4SS and 3SS-1Cu electrodes operated at cell voltage of 18 V and current density of 180 A/m2 gave maximum color and chemical oxygen demand (COD) removals. The COD removal was observed to be 89.37% for 4SS and 72.34% for 3SS 1Cu electrodes from CODo 3,012 mg/L. Color removal was 97% and 98% from its initial value of 1,000 Pt-Co unit for 4SS and 3SS-1Cu combinations. Water quality parameters like total dissolved solids, chloride, nitrate, phosphate, and sulphate reduced from their initial values while using all 4SS and 3SS-1Cu electrode arrangements. Other control factors exercised for optimal operations were ECC floc settling pattern and sludge volume index (SVI). SVI values were found to be &lt;100 mL/g for both electrode combinations.


Sign in / Sign up

Export Citation Format

Share Document