scholarly journals Simultaneous Partial Nitrification and Denitrification Maintained in Membrane Bioreactor for Nitrogen Removal and Hydrogen Autotrophic Denitrification for Further Treatment

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 911
Author(s):  
Kun Dong ◽  
Xinghui Feng ◽  
Wubin Wang ◽  
Yuchao Chen ◽  
Wei Hu ◽  
...  

Low C/N wastewater results from a wide range of factors that significantly harm the environment. They include insufficient carbon sources, low denitrification efficiency, and NH4+-N concentrations in low C/N wastewater that are too high to be treated. In this research, the membrane biofilm reactor and hydrogen-based membrane biofilm reactor (MBR-MBfR) were optimized and regulated under different operating parameters: the simulated domestic sewage with low C/N was domesticated and the domestic sewage was then denitrified. The results of the MBR-MBfR experiments indicated that a C/N ratio of two was suitable for NH4+-N, NO2−-N, NO3−-N, and chemical oxygen demand (COD) removal in partial nitrification-denitrification (PN-D) and hydrogen autotrophic denitrification for further treatment. The steady state for domestic wastewater was reached when the MBR-MBfR in the experimental conditions of HRT = 15 h, SRT = 20 d, 0.04 Mpa for H2 pressure in MBfR, 0.4–0.8 mg/L DO in MBR, MLSS = 2500 mg/L(MBR) and 2800 mg/L(MBfR), and effluent concentrations of NH4+-N, NO3−-N, and NO2−-N were 4.3 ± 0.5, 1.95 ± 0.04, and 2.05 ± 0.15 mg/L, respectively. High-throughput sequencing results revealed the following: (1) The genus Nitrosomonas as the ammonia oxidizing bacteria (AOB) and Denitratisoma as potential denitrifiers were simultaneously enriched in the MBR; (2) at the genus level, Meiothermus,Lentimicrobium, Thauera,Hydrogenophaga, and Desulfotomaculum played a dominant role in leading to NO3−-N and NO2−-N removal in the MBfR.

2012 ◽  
Vol 568 ◽  
pp. 89-93
Author(s):  
Yan Zhang ◽  
Zheng Yang Yang ◽  
Li Li Wang ◽  
Xu Ying Zhao ◽  
Huan Guang Liu ◽  
...  

In this study, effect of C/N ratio on denitrification were investigated using four sets of parallel catching bed reactors, which were using acrylic resin fiber (ARF) as carrier materials. The results indicate that this process which was used in wastewater treatment of civil engineering can get better COD and nitrogen removing performance. NH4+-N removal rate reduced with the increasing of C/N ratio, and the average removal rate of COD and the total nitrogen (TN) increased when C/N ratio is increased. When C/N ratio exceeded 12, TN removal rate has no obvious growing. Meanwhile, fluorescent in situ hybridization (FISH) analysis indicated that the biomass in the biofilm were much richer than which in the suspension, and the ammonia oxidizing bacteria have a easy access to be dominant bacterial community in lower C/N ratio.


1999 ◽  
Vol 39 (7) ◽  
pp. 5-11 ◽  
Author(s):  
Valentina Lazarova ◽  
Danièle Bellahcen ◽  
Jacques Manem ◽  
David A. Stahl ◽  
Bruce E. Rittmann

TURBO N® is a circulating-bed biofilm reactor that provides stable operation and high N removal for a wide range of N and BOD loadings. This paper describes the influence of operating conditions on biofilm composition and population dynamics when the TURBO N® is operated to achieve tertiary nitrification, simultaneous carbon and ammonia oxidation and total nitrogen removal when coupled with a pre-denitrification fixed floating bed reactor. In situ specific nitrification rates and respiration tests showed that ammonium and nitrite oxidizers became less active in the biofilm once oxidation of influent BOD became important. Analyses of community structure with oligonucleotide probes targeted to the 16S rRNA showed the same general trends for nitrifiers, but also suggested shifts in the makeup of the ammonium and nitrite oxidizers that could not be detected with respirometry or specific nitrification rates.


2020 ◽  
Author(s):  
Patricia Perez ◽  
Emily Clements ◽  
Cristian Picioreanu ◽  
Robert nerenberg

<p>The membrane aerated biofilm reactor (MABR) is an emerging wastewater treatment technology that can greatly decrease energy requirements for wastewater treatment. It consists of cassettes of air-supplying, hollow-fiber membranes that can retrofit existing activated sludge processes. MABR behavior differs from conventional biofilm processes due to the counter-diffusion of the electron donor (ammonia) and acceptor (oxygen).</p> <p> </p> <p>Partial nitrification (PN), or partial nitrification Anammox (PNA), can further improve MABR energy efficiency and cost effectiveness.  To achieve this, ammonia oxidizing bacteria (AOB) must outcompete nitrite-oxidizing bacteria (NOB).  High temperatures favor AOB, but it is not feasible to heat the wastewater influent.  However, high-temperature compressed air can be supplied to the membrane lumen, increasing temperatures inside the biofilm without increasing the bulk temperatures. No previous research has addressed temperature gradients in biofilms, which can lead to gradients in  biodegradation kinetics, diffusivities, and O<sub>2</sub> solubility.</p> <p> </p> <p>The objective of this research was to explore the effect of temperature gradients in MABR biofilms, especially with respect to PN. We used a one-dimensional multi-species biofilm model, which considers the MABR physical and biochemical behavior, especially with respect to temperature. The model was implemented using COMSOL Multiphysics. We also used bench-scale experiments to explore the effect of biofilm temperature gradients on MABR nitrification and PN performances and microbial community structure.</p> <p> </p> <p>Model simulations showed that MABR biofilms exposed to a temperature gradient from 20 ºC (biofilm interior) to 10 ºC (bulk liquid) had a 60% increase in nitrification rates compared with biofilms at 10 ºC. More importantly, the model predicted a complete out competition of NOBs within the biofilm.</p> <p> </p> <p>Preliminary experimental results confirm a significant (105%) increase in nitrification fluxes with a temperature of 30ºC compared to ambient temperatures (20ºC). Future experiments will validate the model predicted effects of biofilm temperature gradients on nitrification fluxes and microbial community structure.</p>


2006 ◽  
Vol 53 (3) ◽  
pp. 219-225 ◽  
Author(s):  
B.E. Rittmann

Many exciting new technologies for water-quality control combine microbiological processes with adsorption, advanced oxidation, a membrane or an electrode to improve performance, address emerging contaminants or capture renewable energy. An excellent example is the H2-based membrane biofilm reactor (MBfR), which delivers H2 gas to a biofilm that naturally accumulates on the outer surface of a bubbleless membrane. Autotrophic bacteria in the biofilm oxidise the H2 and use the electrons to reduce NO3−, ClO4− and other oxidised contaminants. This natural partnership of membranes and biofilm makes it possible to gain many cost, performance and simplicity advantages from using H2 as the electron donor for microbially catalysed reductions. The MBfR has been demonstrated for denitrification in drinking water; reduction of perchlorate in groundwater; reduction of selenate, chromate, trichloroethene and other emerging contaminants; advanced N removal in wastewater treatment and autotrophic total-N removal.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fangfang Cai ◽  
Peiyu Luo ◽  
Jinfeng Yang ◽  
Muhammad Irfan ◽  
Shiyu Zhang ◽  
...  

The objective of this study was to find out changes in ammonia oxidation microorganisms with respect to fertilizer as investigated by real-time polymerase chain reaction and high-throughput sequencing. The treatments included control (CK); chemical fertilizer nitrogen low (N) and high (N2); nitrogen and phosphorus (NP); nitrogen phosphorus and potassium (NPK) and organic manure fertilizer (M); MN; MN2; MNPK. The results showed that long-term fertilization influenced soil fertility and affected the abundance and community of ammonia-oxidizing microorganisms by changing the physical and chemical properties of the soil. The abundance and community structure of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was influenced by soil organic carbon, total nitrogen, total soil phosphorus, available phosphorus, available potassium, and soil nitrate. Soil environmental factors affected the nitrification potential by affecting the structure of ammonia-oxidizing microorganisms; specific and rare AOA and AOB rather than the whole AOA or AOB community played dominant role in nitrification.


2005 ◽  
Vol 52 (7) ◽  
pp. 115-120 ◽  
Author(s):  
J. Cowman ◽  
C.I. Torres ◽  
B.E. Rittmann

The hydrogen-based membrane biofilm reactor (MBfR) is effective for reducing nitrate-N to N2 gas, but most wastewaters contain ammonium-N. Here, we document that an aerobic/anoxic MBfR system achieves nearly total N removal (<2 mgN/L) when the influent N is ammonium. The aerobic/anoxic MBfR couples two MBfR modules. The aerobic MBfR is supplied O2 and brings about nitrification of ammonium to nitrate or nitrite. The anoxic MBfR is supplied H2 and brings about denitrification to N2 gas. Total N removal is most strongly influenced by the O2 pressure in the aerobic module: too low O2 caused poor nitrification, while too high O2 inhibited denitrification in the anoxic module. Hydrogen pressure does not strongly affect total-N removal, and the best total-N removal occurs when the H2 and O2 pressures are similar.


2018 ◽  
Vol 19 (2) ◽  
pp. 434-443 ◽  
Author(s):  
Xianxin Luo ◽  
Junfeng Su ◽  
Han Liu ◽  
Tinglin Huang ◽  
Li Wei ◽  
...  

Abstract A moving bed biofilm reactor (MBBR) using Mn(II) and Fe(II) as mixed electron donors was designed for nitrate removal. The optimal state, as determined by response surface methodology, was an Fe(II):Mn(II) molar ratio of 0.62, electron donor:electron acceptor molar ratio of 2.62 and hydraulic retention time of 10.88 h. Subsequently, the MBBR was applied to groundwater treatment and demonstrated a final nitrate-N removal efficiency of 99.5% with a nitrite-N accumulation rate of 0.0706 mg-N·L−1·h−1. Furthermore, high-throughput sequencing was employed to characterize bacterial communities in the MBBR. Results showed that the genera of Pseudomonas and Acinetobacter may make a contribution to the nitrate removal.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3196
Author(s):  
Minmin Jiang ◽  
Yuanyuan Zhang ◽  
Yuhang Yuan ◽  
Yuchao Chen ◽  
Hua Lin ◽  
...  

The back-diffusion of inactive gases severely inhibits the hydrogen (H2) delivery rate of the close-end operated hydrogen-based membrane biofilm reactor (H2-based MBfR). Nevertheless, less is known about the response of microbial communities in H2-based MBfR to the impact of the gases’ back-diffusion. In this research, the denitrification performance and microbial dynamics were studied in a H2-based MBfR operated at close-end mode with a fixed H2 pressure of 0.04 MPa and fed with nitrate (NO3−) containing influent. Results of single-factor and microsensor measurement experiments indicate that the H2 availability was the decisive factor that limits NO3− removal at the influent NO3− concentration of 30 mg N/L. High-throughput sequencing results revealed that (1) the increase of NO3− loading from 10 to 20–30 mg N/L resulted in the shift of dominant functional bacteria from Dechloromonas to Hydrogenophaga in the biofilm; (2) excessive NO3− loading led to the declined relative abundance of Hydrogenophaga and basic metabolic pathways as well as counts of most denitrifying enzyme genes; and (3) in most cases, the decreased quantity of N metabolism-related functional bacteria and genes with increasing distance from the H2 supply end corroborates that the microbial community structure in H2-based MBfR was significantly impacted by the gases’ back-diffusion.


Sign in / Sign up

Export Citation Format

Share Document