scholarly journals Membrane Domain Localization and Interaction of the Prion-Family Proteins, Prion and Shadoo with Calnexin

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 978
Author(s):  
Divya Teja Dondapati ◽  
Pradeep Reddy Cingaram ◽  
Ferhan Ayaydin ◽  
Antal Nyeste ◽  
Andor Kanyó ◽  
...  

The cellular prion protein (PrPC) is renowned for its infectious conformational isoform PrPSc, capable of templating subsequent conversions of healthy PrPCs and thus triggering the group of incurable diseases known as transmissible spongiform encephalopathies. Besides this mechanism not being fully uncovered, the protein’s physiological role is also elusive. PrPC and its newest, less understood paralog Shadoo are glycosylphosphatidylinositol-anchored proteins highly expressed in the central nervous system. While they share some attributes and neuroprotective actions, opposing roles have also been reported for the two; however, the amount of data about their exact functions is lacking. Protein–protein interactions and membrane microdomain localizations are key determinants of protein function. Accurate identification of these functions for a membrane protein, however, can become biased due to interactions occurring during sample processing. To avoid such artifacts, we apply a non-detergent-based membrane-fractionation approach to study the prion protein and Shadoo. We show that the two proteins occupy similarly raft and non-raft membrane fractions when expressed in N2a cells and that both proteins pull down the chaperone calnexin in both rafts and non-rafts. These indicate their possible binding to calnexin in both types of membrane domains, which might be a necessary requisite to aid the inherently unstable native conformation during their lifetime.

2021 ◽  
Author(s):  
Maciej Gielnik ◽  
Aneta Szymanska ◽  
Xiaolin Dong ◽  
Jyri Jarvet ◽  
Zeljko M. Svedruzic ◽  
...  

Misfolding of the cellular prion protein (PrPC) is associated with the development of fatal neurodegenerative diseases called transmissible spongiform encephalopathies (TSEs). Metal ions appear to play a crucial role in the protein misfolding, and metal imbalance may be part of TSE pathologies. PrPC is a combined Cu(II) and Zn(II) metal binding protein, where the main metal binding site is located in the octarepeat (OR) region. Here, we used biophysical methods to characterize Cu(II) and Zn(II) binding to the isolated OR region. Circular dichroism (CD) spectroscopy data suggest that the OR domain binds up to four Cu(II) ions or two Zn(II) ions. Upon metal binding, the OR region seems to adopt a transient antiparallel β-sheet hairpin structure. Fluorescence spectroscopy data indicates that under neutral conditions, the OR region can bind both Cu(II) and Zn(II) ions, whereas under acidic conditions it binds only Cu(II) ions. Molecular dynamics simulations suggest that binding of both metal ions to the OR region results in formation of β-hairpin structures. As formation of β-sheet structures is a first step towards amyloid formation, we propose that high concentrations of either Cu(II) or Zn(II) ions may have a pro-amyloid effect in TSEs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maciej Gielnik ◽  
Michał Taube ◽  
Lilia Zhukova ◽  
Igor Zhukov ◽  
Sebastian K. T. S. Wärmländer ◽  
...  

AbstractThe cellular prion protein (PrPC) is a mainly α-helical 208-residue protein located in the pre- and postsynaptic membranes. For unknown reasons, PrPC can undergo a structural transition into a toxic, β-sheet rich scrapie isoform (PrPSc) that is responsible for transmissible spongiform encephalopathies (TSEs). Metal ions seem to play an important role in the structural conversion. PrPC binds Zn(II) ions and may be involved in metal ion transport and zinc homeostasis. Here, we use multiple biophysical techniques including optical and NMR spectroscopy, molecular dynamics simulations, and small angle X-ray scattering to characterize interactions between human PrPC and Zn(II) ions. Binding of a single Zn(II) ion to the PrPC N-terminal domain via four His residues from the octarepeat region induces a structural transition in the C-terminal α-helices 2 and 3, promotes interaction between the N-terminal and C-terminal domains, reduces the folded protein size, and modifies the internal structural dynamics. As our results suggest that PrPC can bind Zn(II) under physiological conditions, these effects could be important for the physiological function of PrPC.


2002 ◽  
Vol 9 (4) ◽  
pp. 245-252 ◽  
Author(s):  
France Mélot ◽  
Caroline Thielen ◽  
Thouraya Labiet ◽  
Sabine Eisher ◽  
Olivier Jolois ◽  
...  

The cellular prion protein (PrPc) is a glycolipid-anchored cell surface protein that usually exhibits three glycosylation states. Its post-translationally modified isoform, PrPsc, is involved in the pathogenesis of various transmissible spongiform encephalopathies (TSEs). In bovine species, BSE infectivity appears to be restricted to the central nervous system; few or no detectable infectivity is found in lymphoid tissues in contrast to scrapie or variant CJD. Since expression of PrPc is a prerequisite for prion replication, we have investigated PrPc expression by bovine immune cells. Lymphocytes from blood and five different lymph organs were isolated from the same animal to assess intra- and interindividual variability of PrPc expression, considering six individuals. As shown by flow cytometry, this expression is absent or weak on granulocytes but is measurable on monocytes, B and T cells from blood and lymph organs. The activation of the bovine cells produces an upregulation of PrPc. The results of our in vitro study of PrPc biosynthesis are consistent with previous studies in other species. Interestingly, western blotting experiments showed only one form of the protein, the diglycosylated band. We propose that the glycosylation state could explain the lack of infectivity of the bovine immune cells.


2009 ◽  
Vol 89 (4) ◽  
pp. 1105-1152 ◽  
Author(s):  
Adriano Aguzzi ◽  
Anna Maria Calella

Transmissible spongiform encephalopathies (TSEs) are inevitably lethal neurodegenerative diseases that affect humans and a large variety of animals. The infectious agent responsible for TSEs is the prion, an abnormally folded and aggregated protein that propagates itself by imposing its conformation onto the cellular prion protein (PrPC) of the host. PrPCis necessary for prion replication and for prion-induced neurodegeneration, yet the proximal causes of neuronal injury and death are still poorly understood. Prion toxicity may arise from the interference with the normal function of PrPC, and therefore, understanding the physiological role of PrPCmay help to clarify the mechanism underlying prion diseases. Here we discuss the evolution of the prion concept and how prion-like mechanisms may apply to other protein aggregation diseases. We describe the clinical and the pathological features of the prion diseases in human and animals, the events occurring during neuroinvasion, and the possible scenarios underlying brain damage. Finally, we discuss potential antiprion therapies and current developments in the realm of prion diagnostics.


2006 ◽  
Vol 20 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Gwynivere A Davies ◽  
Adam R Bryant ◽  
John D Reynolds ◽  
Frank R Jirik ◽  
Keith A Sharkey

The gastrointestinal (GI) tract plays a central role in the pathogenesis of transmissible spongiform encephalopathies. These are human and animal diseases that include bovine spongiform encephalopathy, scrapie and Creutzfeldt-Jakob disease. They are uniformly fatal neurological diseases, which are characterized by ataxia and vacuolation in the central nervous system. Alhough they are known to be caused by the conversion of normal cellular prion protein to its infectious conformational isoform (PrPsc) the process by which this isoform is propagated and transported to the brain remains poorly understood. M cells, dendritic cells and possibly enteroendocrine cells are important in the movement of infectious prions across the GI epithelium. From there, PrPscpropagation requires B lymphocytes, dendritic cells and follicular dendritic cells of Peyer’s patches. The early accumulation of the disease-causing agent in the plexuses of the enteric nervous system supports the contention that the autonomic nervous system is important in disease transmission. This is further supported by the presence of PrPscin the ganglia of the parasympathetic and sympathetic nerves that innervate the GI tract. Additionally, the lymphoreticular system has been implicated as the route of transmission from the gut to the brain. Although normal cellular prion protein is found in the enteric nervous system, its role has not been characterized. Further research is required to understand how the cellular components of the gut wall interact to propagate and transmit infectious prions to develop potential therapies that may prevent the progression of transmissible spongiform encephalopathies.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
N. C. Ferreira ◽  
L. M. Ascari ◽  
A. G. Hughson ◽  
G. R. Cavalheiro ◽  
C. F. Góes ◽  
...  

ABSTRACTThe search for antiprion compounds has been encouraged by the fact that transmissible spongiform encephalopathies (TSEs) share molecular mechanisms with more prevalent neurodegenerative pathologies, such as Parkinson's and Alzheimer's diseases. Cellular prion protein (PrPC) conversion into protease-resistant forms (protease-resistant PrP [PrPRes] or the scrapie form of PrP [PrPSc]) is a critical step in the development of TSEs and is thus one of the main targets in the screening for antiprion compounds. In this work, three trimethoxychalcones (compounds J1, J8, and J20) and one oxadiazole (compound Y17), previously identifiedin vitroto be potential antiprion compounds, were evaluated through different approaches in order to gain inferences about their mechanisms of action. None of them changed PrPCmRNA levels in N2a cells, as shown by reverse transcription-quantitative real-time PCR. Among them, J8 and Y17 were effective in real-time quaking-induced conversion reactions using rodent recombinant PrP (rPrP) from residues 23 to 231 (rPrP23–231) as the substrate and PrPScseeds from hamster and human brain. However, when rPrP from residues 90 to 231 (rPrP90–231), which lacks the N-terminal domain, was used as the substrate, only J8 remained effective, indicating that this region is important for Y17 activity, while J8 seems to interact with the PrPCglobular domain. J8 also reduced the fibrillation of mouse rPrP23–231seeded within vitro-produced fibrils. Furthermore, most of the compounds decreased the amount of PrPCon the N2a cell surface by trapping this protein in the endoplasmic reticulum. On the basis of these results, we hypothesize that J8, a nontoxic compound previously shown to be a promising antiprion agent, may act by different mechanisms, since its efficacy is attributable not only to PrP conversion inhibition but also to a reduction of the PrPCcontent on the cell surface.


2016 ◽  
Vol 213 (3) ◽  
pp. 313-327 ◽  
Author(s):  
Mario Nuvolone ◽  
Mario Hermann ◽  
Silvia Sorce ◽  
Giancarlo Russo ◽  
Cinzia Tiberi ◽  
...  

Although its involvement in prion replication and neurotoxicity during transmissible spongiform encephalopathies is undisputed, the physiological role of the cellular prion protein (PrPC) remains enigmatic. A plethora of functions have been ascribed to PrPC based on phenotypes of Prnp−/− mice. However, all currently available Prnp−/− lines were generated in embryonic stem cells from the 129 strain of the laboratory mouse and mostly crossed to non-129 strains. Therefore, Prnp-linked loci polymorphic between 129 and the backcrossing strain resulted in systematic genetic confounders and led to erroneous conclusions. We used TALEN-mediated genome editing in fertilized mouse oocytes to create the Zurich-3 (ZH3) Prnp-ablated allele on a pure C57BL/6J genetic background. Genomic, transcriptional, and phenotypic characterization of PrnpZH3/ZH3 mice failed to identify phenotypes previously described in non–co-isogenic Prnp−/− mice. However, aged PrnpZH3/ZH3 mice developed a chronic demyelinating peripheral neuropathy, confirming the crucial involvement of PrPC in peripheral myelin maintenance. This new line represents a rigorous genetic resource for studying the role of PrPC in physiology and disease.


2017 ◽  
Vol 114 (36) ◽  
pp. 9617-9622 ◽  
Author(s):  
Enrico Caldarulo ◽  
Alessandro Barducci ◽  
Kurt Wüthrich ◽  
Michele Parrinello

In transmissible spongiform encephalopathies (TSEs), which are lethal neurodegenerative diseases that affect humans and a wide range of other mammalian species, the normal “cellular” prion protein (PrPC) is transformed into amyloid aggregates representing the “scrapie form” of the protein (PrPSc). Continued research on this system is of keen interest, since new information on the physiological function of PrPC in healthy organisms is emerging, as well as new data on the mechanism of the transformation of PrPC to PrPSc. In this paper we used two different approaches: a combination of the well-tempered ensemble (WTE) and parallel tempering (PT) schemes and metadynamics (MetaD) to characterize the conformational free-energy surface of PrPC. The focus of the data analysis was on an 11-residue polypeptide segment in mouse PrPC(121–231) that includes the β2–α2 loop of residues 167–170, for which a correlation between structure and susceptibility to prion disease has previously been described. This study includes wild-type mouse PrPC and a variant with the single-residue replacement Y169A. The resulting detailed conformational landscapes complement in an integrative manner the available experimental data on PrPC, providing quantitative insights into the nature of the structural transition-related function of the β2–α2 loop.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 770 ◽  
Author(s):  
Giulia Salzano ◽  
Gabriele Giachin ◽  
Giuseppe Legname

Prion, or PrPSc, is the pathological isoform of the cellular prion protein (PrPC) and it is the etiological agent of transmissible spongiform encephalopathies (TSE) affecting humans and animal species. The most relevant function of PrPC is its ability to bind copper ions through its flexible N-terminal moiety. This review includes an overview of the structure and function of PrPC with a focus on its ability to bind copper ions. The state-of-the-art of the role of copper in both PrPC physiology and in prion pathogenesis is also discussed. Finally, we describe the structural consequences of copper binding to the PrPC structure.


2011 ◽  
Vol 22 (17) ◽  
pp. 3041-3054 ◽  
Author(s):  
Patricia Carulla ◽  
Ana Bribián ◽  
Alejandra Rangel ◽  
Rosalina Gavín ◽  
Isidro Ferrer ◽  
...  

Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol–anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-d-aspartic acid (NMDA)–mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6–PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.


Sign in / Sign up

Export Citation Format

Share Document