scholarly journals Preliminary Study on Enzymatic-Based Cleaning of Cation-Exchange Membranes Used in Electrodialysis System in Red Wine Production

Membranes ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 114 ◽  
Author(s):  
Bdiri ◽  
Bensghaier ◽  
Chaabane ◽  
Kozmai ◽  
Baklouti ◽  
...  

The use of enzymatic agents as biological solutions for cleaning ion-exchange membranes fouled by organic compounds during electrodialysis (ED) treatments in the food industry could be an interesting alternative to chemical cleanings implemented at an industrial scale. This paper is focused on testing the cleaning efficiency of three enzyme classes (β-glucanase, protease, and polyphenol oxidase) chosen for their specific actions on polysaccharides, proteins, and phenolic compounds, respectively, fouled on a homogeneous cation-exchange membrane (referred CMX-Sb) used for tartaric stabilization of red wine by ED in industry. First, enzymatic cleaning tests were performed using each enzyme solution separately with two different concentrations (0.1 and 1.0 g/L) at different incubation temperatures (30, 35, 40, 45, and 50 °C). The evolution of membrane parameters (electrical conductivity, ion-exchange capacity, and contact angle) was determined to estimate the efficiency of the membrane′s principal action as well as its side activities. Based on these tests, we determined the optimal operating conditions for optimal recovery of the studied characteristics. Then, cleaning with three successive enzyme solutions or the use of two enzymes simultaneously in an enzyme mixture were tested taking into account the optimal conditions of their enzymatic activity (concentration, temperatures, and pH). This study led to significant results, indicating effective external and internal cleaning by the studied enzymes (a recovery of at least 25% of the electrical conductivity, 14% of the ion-exchange capacity, and 12% of the contact angle), and demonstrated the presence of possible enzyme combinations for the enhancement of the global cleaning efficiency or reducing cleaning durations. These results prove, for the first time, the applicability of enzymatic cleanings to membranes, the inertia of their action towards polymer matrix to the extent that the choice of enzymes is specific to the fouling substrates.

In this study the cation exchange membranes(CEM) were fabricated using 3 different compositions of sulphonated poly vinyl alcohol (SPVA) and phosphorylated graphene oxide(PGO) in weight ratios by physicalmixing and casting method. Loading of PGO in the SPVA improvedwater uptake property which signifies increase in ion exchange capacity(IEC) and proton conductivity as presence of acidic groups were characterized. These fabricated membranes performances were assessed in microbial fuel cells(MFCs) and characterized using XRD and FTIR for its compositional analysis. Due to proper proton conducting channelsmost suitable CEM (SPVA-PGO-3) revealed higher proton conductivity 9.0 x 10-2 S/cm at 27oC, water uptake 114%, area swelling 54.2% and ion exchange capacity (IEC) 1.92 meq/g. The power density obtained for this composite membrane applied in MFC-3 was observed to be 503.1 mW/m2 while the COD removal results obtained as 80.8 %.


2020 ◽  
Vol 2 (4) ◽  
pp. 265-271
Author(s):  
I. A. Prikhno ◽  
E. Yu. Safronova ◽  
I. A. Stenina ◽  
P. A. Yurova ◽  
A. B. Yaroslavtsev

2012 ◽  
Vol 506 ◽  
pp. 437-440 ◽  
Author(s):  
T. Nitanan ◽  
Prasert Akkaramongkolporn ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat ◽  
Praneet Opanasopit

In this study, polystyrene nanofiber ion exchangers (PSNIE) were successfully prepared by a new method comprising of electrospinning and the subsequent crosslinking with formaldehyde and sulfonation in sulfuric acid to create the cation exchange functionality on the fibers surfaces. The PS solution at 15% w/v in dimethylacetamide (DMAc) produced the smallest PS nanofibers (399±38 nm) with good performance. The degree of crosslink and ion exchange capacity (IEC) of PSNIE depended upon the crosslinking time. The longer crosslinking time caused the greater crosslinked PS fibers. At the longest crosslinking time of 75 min, the remaining crosslinked PS fibers in dichloromethane were 94.12%; whereas, the starting fibers completely dissolved. This crosslinking agent (e.g. formaldehyde) might introduce methylene bridges in addition to sulfone bridges into the fibers. However, IEC decreased as crosslinking time increased, probably due to the difficulty of sulfonic functional groups to react with crosslinked PS fibers. The PSNIE crosslinked for 10 min showed the maximum IEC of 2.86 meq/g-dry-PSNIE, and the diameter of the PSNIE after sulfonation increased to 450-460 nm. Since cationic drug could be loaded onto this novel PSNIE, this nanofiber ion exchanger may be applied for controlled release delivery.


1992 ◽  
Vol 57 (9) ◽  
pp. 1905-1914
Author(s):  
Miroslav Bleha ◽  
Věra Šumberová

The equilibrium sorption of uni-univalent electrolytes (NaCl, KCl) in heterogeneous cation exchange membranes with various contents of the ion exchange component and in ion exchange membranes Ralex was investigated. Using experimental data which express the concentration dependence of equilibrium sorption, validity of the Donnan relation for the systems under investigation was tested and values of the Glueckauf inhomogeneity factor for Ralex membranes were determined. Determination of the equilibrium sorption allows the effect of the total content of internal water and of the ion-exchange capacity on the distribution coefficients of the electrolyte to be determined.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
M. M. Nasef ◽  
H. Saidi ◽  
A. H. Yahaya

Crosslinked cation exchange membranes bearing sulfonic acid groups (PE-g-PSSA/DVB) were prepared by radiationinduced grafting of styrene/divinylbenzene (DVB) mixtures onto low density polyethylene (PE) films followed by sulfonation reactions. The effect of addition of DVB (2 and 4%) on the grafting behavior and the physico-chemical properties of the membranes such as ion exchange capacity, swelling and ionic conductivity were evaluated incorrelation with grafting yield (Y%). The structural and thermal properties of the membranes were also studied using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), respectively. Crosslinking with DVB was found to considerably affect the properties of the membranes in a way that reduces the swelling properties and enhances the chemical stability. The ion conductivity of the crosslinked membranes recorded a level of 10–2 S/cm at sufficient grafting yield (28%) despite the reduction caused by the formation of crosslinking structure. The results of this work suggest that membranes prepared in this study are potential alternatives for various electrochemical applications.


Sign in / Sign up

Export Citation Format

Share Document