scholarly journals New Approaches to Friction Stir Welding of Aluminum Light-Alloys

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 233 ◽  
Author(s):  
Marcello Cabibbo ◽  
Archimede Forcellese ◽  
Eleonora Santecchia ◽  
Chiara Paoletti ◽  
Stefano Spigarelli ◽  
...  

Friction stir welding (FSW) is the most widely used solid-state joining technique for light-weight plate and sheet products. This new joining technique is considered an energy-saving, environment friendly, and relatively versatile technology. FSW has been found to be a reliable joining technique in high-demand technology fields, such as high-strength aerospace aluminum and titanium alloys, and for other metallic alloys that are hard to weld by conventional fusion welding. Several studies accounted for the microstructural modifications induced by solid-state FSW, based on the resulting mechanical properties obtained at the FSW joints, such as tensile, bending, torsion, ductility and fatigue responses. In the last few years with the need and emerging urgency to widen the FSW application fields, broadening the possible alloy systems, and to optimize the resulting mechanical properties, this joining technique was further developed. In this respect, the present contribution focuses on two modified-FSW techniques and approaches applied to aluminum alloys plates. In a first case, an age-hardening AA6082 sheets were double side friction stir welded (DS-FSW). In a second case a non-age-hardening AA5754 sheet was FSW by an innovative approach in which welding pin was forced to slightly deviate away from the joining centreline (defined by authors as RT). In both the cases different pin heights were used, the sheets were subjected to heat treatments (peak hardening T6 for the AA6082, and annealing for the AA5754) and compared to the non-heat treated FSW conditions. Microstructural modifications were characterized by optical microscopy (OM). The mechanical properties were characterized both locally, by nanoindentation techniques, and globally, by tensile (yield, YT; ultimate, UT; and elongation, El) or forming limit curve (FLC) tests. Both the new approaches were directly compared to the conventional FSW techniques in terms of resulting microstructures and mechanical responses.

2021 ◽  
Vol 50 (9) ◽  
pp. 2743-2754
Author(s):  
Ashish Jacob ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Abdulrahman Al-Ahmari ◽  
Mustufa Haider Abidi ◽  
...  

Certain age hardenable alloys such as AA7475 cannot be joined with perfection using fusion welding techniques. This requires non-conventional welding technique such as friction stir welding process to join these ‘difficult to weld’ alloys. In this study, three different cooling conditions i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have been analyzed to understand its impact on the welding process. In-process cooling was found to behave effectively and also enhanced the mechanical properties of the welded joints. A stable microstructure was clearly seen in the images observed under the metallurgical microscope. The weld efficiencies were found to be good in each of the samples which are indicative of a strong metallic joint. The effective cooling conditions employed had an overall positive impact on the joint.


2016 ◽  
Vol 857 ◽  
pp. 228-231
Author(s):  
Ho Sung Lee ◽  
Ye Rim Lee ◽  
Kyung Ju Min

Aluminum-Lithium alloys have been found to exhibit superior mechanical properties as compared to the conventional aerospace aluminum alloys in terms of high strength, high modulus, low density, good corrosion resistance and fracture toughness at cryogenic temperatures. Even though they do not form low-melting eutectics during fusion welding, there are still problems like porosity, solidification cracking, and loss of lithium. This is why solid state friction stir welding is important in this alloy. It is known that using Al-Cu-Li alloy and friction stir welding to super lightweight external tank for space shuttle, significant weight reduction has been achieved. The objective of this paper is to investigate the effect of friction stir tool rotation speed on mechanical and microstructural properties of Al-Cu-Li alloy. The plates were joined with friction stir welding process using different tool rotation speeds (300-800 rpm) and welding speeds (120-420 mm/min), which are the two prime welding parameters in this process.


2003 ◽  
Vol 125 (03) ◽  
pp. D10-D16 ◽  
Author(s):  
Matt Hansen

This article provides details of a low-temperature joining technology called friction stir welding. Friction stir welding (FSW) uses a cylindrical, shouldered tool with a profiled pin that is rotated and slowly plunged into the joint line between two pieces of sheet or plate material. According to an engineer, stir welding eliminated 60 percent of the rivets that the plane would have otherwise required. Eclipse Aviation Corp., Albuquerque, NM, is building a separate plant to house its stir welding operations for commercial production, once its plane receives certification by the US Federal Aviation Administration. FSW is a solid-state process, more like forging and extruding than to fusion welding. Since the process is solid state, the joint is not subject to any shrinkage because of phase changes. The process also introduces minimal heat into the weld, so the heat-affected zone is relatively small in comparison to arc welding.


2021 ◽  
Vol 15 (3) ◽  
pp. 8332-8343
Author(s):  
Oyindamola Kayode ◽  
Esther Titilayo Akinlabi

Joining of aluminium and magnesium alloys frequently pose significant challenges to the extent where joining may seem impossible, due to differences in the physical, metallurgical, and chemical properties of the materials. Friction stir welding is a solid-state welding technique which uses a non-consumable tool to join metals. This study examines the dissimilar friction stir welding of 3 mm thick AA1050 and AZ91D alloy sheets. Successful defect-free joints were achieved at rotational speeds of 400 rpm and 600 rpm, and a constant traverse speed of 50 mm/min. The metallurgical investigations used to characterize the microstructure of the welds are optical microscopy (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The microstructures of the samples show distinct morphology attributed to their different rotational speeds. However, Al3Mg2 intermetallics (IMCs) phase was detected in the white bands present in both weld samples. The IMCs were formed through solid-state diffusion. The mechanical properties characterizations includes the microhardness profiles and tensile testing. The variation in the rotational speeds do not have a significant effect on the microhardness distribution of the weld samples. The tensile strength of the dissimilar weld improved substantially with the presence of an interpenetration feature (IPF).


2020 ◽  
Vol 6 (2) ◽  
pp. 29-35
Author(s):  
Irza Sukamana

Pengelasan merupakan proses penggabungan dua atau lebih logam dasar yang disatukan di permukaan kontaknya dengan atau tanpa zat penambah maupun pengisi.Pengelasan terbagi menjadi dua kategori utama yaitu Liquid-State Weldingdan Solid-State Welding. Friction Stir Weldingmerupakan salah satu contoh pengelasan Solid-State Welding (Non-Fusion Welding).   Aluminium adalah logam yang paling banyak terdapat di kerak bumi, dan unsur ketiga terbanyak setelah oksigen dan silikon. Aluminium adalah suatu unsur kimia yang terletak pada golongan 13 periode 3 dengan lambang Al dengan nomor atom 13. Aluminium terbuat dari 66% bauksit dan 33% tanah liat. Aluminium merupakan salah satu material yang sering digunakan sebagai bahan baku sambungan untuk pengelasan Friction Stir Welding.   Friction Stir Welding (FSW) atau Las Gesek Puntir adalah proses pengelasan gesek yang memuntir tool dengan memanfaatkan energi panas dan penekanan tanpa zat penambah maupun pengisi hingga terjadi perubahan fasa pada logam dasar. Parameter proses pengelasan yang dilakukan pada penelitian ini adalah laju translasi tool yaitu, 16 mm/menit dan 22 mm/menit dengan putaran tool 2000 rpm menggunakan jenis indentor changing spiral form. Adapun pengujian yang dilakukan yaitu, pengujian tarik, pengujian kekerasan dan pengujian komposisi kimia.   Hasil dari penelitian ini adalah ditemukan bahwa laju translasi tool, perlakuan panas dan kecepatan pengelasan sangat mempengaruhi sifat – sifat mekanik aluminium seri 1xxx dan seri 5xxx yang telas dilas. Laju translasi 22 mm/menit akan meningkatkan nilai kekerasan dan kekuatan tarik yang lebih baik dibandingkan dengan laju translasi 16 mm/menit, namun tidak terlalu berdampak signifikan terhadap unsur-unsur kimiai di dalamnya.


2019 ◽  
Vol 69 (1) ◽  
pp. 131-142 ◽  
Author(s):  
M. M. Vishwanath ◽  
N. Lakshamanaswamy ◽  
G. K. Ramesh

AbstractFiction Stir welding (FSW) a unique type of metal joining process in solid state, where the heat generation takes place due to the friction action between the rotating tool and the work piece. It is generally used to join all series of Aluminum alloys with good strength and other metallic alloys finds difficult to weld through regular fusion welding techniques. The metal joining takes place in the solid state as the metal to be welded reaches about 80% to 90% of its melting temperature. The joining of metals in friction stir welding does not require any filler metals all classes of Aluminium alloys can be joined and in some desirable cases dissimilar metal compositions and Aluminiun metals composites can be joined satisfactorily. Joining of dissimilar metals has become a trend in the industries like aerospace, automotive chemical etc. as the helps in reducing the cost incurred by eliminating the costly materials. In the present study an experimental investigations are made to study the heat transfer behavior by determining the temperature distribution in AA5052-AA6061 plates during the Friction Stir welding. A three dimensional transient analysis is made by using ANSYS finite element analysis software. Thermocouples are placed at the suitable locations and the same point the temperature readings were taken from the simulation results. The experimental data is compared with the numerically simulated results. The numerical simulations results obtained are in better agreement with the experimental data obtained.


2014 ◽  
Vol 44 (1) ◽  
pp. 23-26
Author(s):  
G. Gopala Krishna ◽  
P. Ram Reddy ◽  
M. Manzoor Hussain

Friction Stir Welding (FSW) is a solid state welding process gaining more applications in various industries due to better quality of the joint as it has no effect on parent metal. In FSW process a non consumable rotating welding tool is used to generate frictional heat between tool and abutting surface of work piece and plastic dissipation of energy to accomplish the weld. Being a solid state joining process, friction stir welding process offers various advantages like low distortion, absence of melt related defects, high joint strength etc. as compared to other conventional fusion welding techniques.Experiments were conducted on 6 mm thickness Aluminum AA6351-T4, commercially available plates. The seplates are joined by FSW along the rolling direction (longitudinal weld orientation) and across the rolling direction (transverse weld orientation). The hardness and tensile strength results of the weldments are presented. Results show superior mechanical properties for the joints with plates along the rolling direction as compared with the joints obtained by across the rolling direction.DOI: http://dx.doi.org/10.3329/jme.v44i1.19494


2019 ◽  
Vol 69 (4) ◽  
pp. 159-170
Author(s):  
M. M. Vishwanath ◽  
N. Lakshamanaswamy ◽  
G. K. Ramesh

AbstractFiction Stir welding (FSW) a unique type of metal joining process in solid state, where the heat generation takes place due to the friction action between the rotating tool and the work piece. It is generally used to join all series of Aluminum alloys with good strength and other metallic alloys finds difficult to weld through regular fusion welding techniques. The metal joining takes place in the solid state as the metal to be welded reaches about 80% to 90% of its melting temperature. The joining of metals in friction stir welding does not require any filler metals all classes of Aluminium alloys can be joined and in some desirable cases dissimilar metal compositions and Aluminiun metals composites can be joined satisfactorily. Joining of dissimilar metals has become a trend in the industries like aerospace, automotive chemical etc. as the helps in reducing the cost incurred by eliminating the costly materials. In the present study an experimental investigations are made to study the heat transfer behavior by determining the temperature distribution in AA5052-AA6061 plates during the Friction Stir welding. A three dimensional transient analysis is made by using ANSYS finite element analysis software. Thermocouples are placed at the suitable locations and the same point the temperature readings were taken from the simulation results. The experimental data is compared with the numerically simulated results. The numerical simulations results obtained are in better agreement with the experimental data obtained.


Sign in / Sign up

Export Citation Format

Share Document