scholarly journals Copper Precipitation Behavior during Continuous Cooling and Subsequent Aging of Powder-Forged Fe-2.5Cu-C Alloy

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1350
Author(s):  
Sui Wang ◽  
Yake Wu ◽  
Tengyu Zhang ◽  
Feng Jiang

Microstructure and property evolution of a powder-forged Fe-2.5Cu-C alloy during continuous cooling and subsequent aging were investigated to improve its mechanical properties. During continuous cooling, copper precipitates formed were consistent with the interphase mechanism when the cooling rate was less than 7 °C/s; however, the hardness of the specimen was always higher at faster cooling rates because finer grains and harder phases formed. During subsequent aging, copper precipitates formed and/or coarsened continuously while the hardness of the alloys was greatly influenced by the combined effects of the primary and secondary precipitates, as revealed by the theoretical calculations. In addition, the forming and evolving mechanisms of the copper precipitates at different stages were also discussed based on the experimental results. This study will provide guidance to the industry for achieving high performance in the powder-forged products by treatment manipulation.

2019 ◽  
Vol 38 (2019) ◽  
pp. 113-124 ◽  
Author(s):  
Yaxu Zheng ◽  
Fuming Wang ◽  
Changrong Li ◽  
Yu Lin ◽  
Ruifang Cao

AbstractThe effect of cooling rate on martensitic structure and carbides precipitation behavior was investigated based on Cr-Mo alloy steel with different quenching media of oil, water and 10% NaCl-water, respectively. The influence mechanism of martensite structure and carbide precipitates on mechanical properties was also studied. The results showed that martensite packets and blocks were refined with water quenching, however, they were coarse with oil or 10% NaCl-water quenching. Martensite laths were refined and dislocation density increased with increasing cooling rate. The carbides in tempered steel were coarse obviously with 10% NaCl-water quenching. The impact toughness deteriorated significantly with 10% NaCl-water quenching due to coarsening of martensite structure and carbides.


2011 ◽  
Vol 415-417 ◽  
pp. 865-868
Author(s):  
Di Xin Yang ◽  
Xing He Wang ◽  
Zi Yong Liu ◽  
Yuan Fang Sun

Abstract. S890 steel is a Mo-Mn alloy system bainitic structual steel which is developed in recent years and its strength is more than 900MPa,this steel is the material of hydraulic support possessing high-performance in coal mine.The continuous cooling curve of S890 steel was determined,microstructure and hardness of this steel in various cooling rate were analysised in the paper.Results have shown that:S890 steel has good quenching degree and quench-hardenability,and it can get steady microstructures which is mainly bainite over a broad range of cooling rate.


Author(s):  
Sheng tao Qiu ◽  
Jun Wei

The dilatometer curves of continuous cooling transformation of 12Mn steel were measured with Formastor-FⅡthermal mechanical simulator.The steel's undercooled austenite phase continuous cooling transformation curves ( CCT curves) were established by means of the dilatometer method and the metallographic-hardness measurement method. The effect of cooling rate on microstructure and hardness of the steel was studied. CCT curve of test steel was simulated by JMatPro. The results show that the Ac1 and Ac3 of the experimental steel are 692 ℃ and 855 ℃ ; the microstructure obtained is made of ferrite,pearlite and bainite.The ferrite transformation and pearlite transformation occur at a slower cooling rate,in which the ferrite is dominant. When the cooling rate is greater than 4.25 ℃ / s bainite transformation happens.As the cooling rate increases,microstructure or grains become finer.The hardness of the tested steel with increasing cooling rate shows a trend of first fast increase and soon decrease.The simulation results are consistent with the measured CCT law. The high temperature mechanical properties of 12mn steel round billet were tested by gleeble-1500d thermal / mechanical simulator. The tensile strength, reduction of area and stress-strain curves of the billet were obtained in the range of 600-1300 ℃.


2010 ◽  
Vol 638-642 ◽  
pp. 3573-3578 ◽  
Author(s):  
Xue Min Wang ◽  
Chuang Li ◽  
Cheng Jia Shang ◽  
Chang An Zheng ◽  
Xin Lai He

The precipitation behavior of several Cu-bearing steels with various copper contents during continuous cooling has been studied. The optical microscope and HRTEM were employed to study the influence of cooling rate on the precipitation process. Also, the hardness of samples with different processes is tested. The results show that when the steels was cooled at a cooling rate between 0.1-1°C/s with the cooling rate increasing the second phase precipitates become finer but the precipitates become denser. When the cooling rate is 1°C /s the density of the second phase precipitates are the largest. When the cooling rate is quicker than 1°C /s as the cooling rate increase the precipitates become finer and fewer. The hardness tests also show that the sample will get the highest hardness. When the samples are cooled at a rate larger than 5°C /s, there is few precipitates in samples. The copper-rich second phase form by Inter-phase precipitation, and the copper-rich phase i.e. G.P zone is the main cause to strengthen the alloy. As the copper content varies from 1.5wt% to 2.5wt% the highest hardness could be obtain when the samples is cooled at a rate of 1°C /s and the density of the precipitates is the largest


Sign in / Sign up

Export Citation Format

Share Document