scholarly journals Inelastic Strength for Fire Resistance of Composite I-Beam Covered by Insulation Material Subjected to Basic Loading Condition

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 739
Author(s):  
Xuan Tung Nguyen ◽  
Jong Sup Park

This paper presents a nonlinear numerical study on the moment resistance of composite steel-concrete beam using fire insulation subjected to various fire scenarios and basic loading conditions. The temperature-dependent material properties of fire insulation, concrete and steel were taken into consideration. The nonlinear finite element analysis was done by utilizing a commercial finite element program, ABAQUS. The obtained moment capacity of the composite I-beam from the current fire code was also performed and compared. The results showed that the fire scenarios and the fire insulation thickness have a great influence on the temperature distribution and strength degradation of the composite beam. The capacity of the beam in hydrocarbon fires, which is the most severe scenario, decreases faster than that in ISO834 standard fire and external fire. The fire resistance of the beam increases as the fire insulation thickness increases due to the temperature degradation in the steel beam. The calculated results from the current fire codes give conservative value at normal temperature and low temperature. The current fire codes can give unconservative values at high temperature when there is a great temperature discrepancy between parts of the beam. A new factor was proposed to determine the fire moment resistance of the composite beam with non-uniform temperature.

2021 ◽  
Vol 9 (1) ◽  
pp. 36
Author(s):  
Dong-Ha Lee ◽  
Seung-Joo Cha ◽  
Jeong-Dae Kim ◽  
Jeong-Hyeon Kim ◽  
Seul-Kee Kim ◽  
...  

Because environmentally-friendly fuels such as natural gas and hydrogen are primarily stored in the form of cryogenic liquids to enable efficient transportation, the demand for cryogenic fuel (LNG, LH) ships has been increasing as the primary carriers of environmentally-friendly fuels. In such ships, insulation systems must be used to prevent heat inflow to the tank to suppress the generation of boil-off gas (BOG). The presence of BOG can lead to an increased internal pressure, and thus, its control and prediction are key aspects in the design of fuel tanks. In this regard, although the thermal analysis of the phase change through a finite element analysis requires less computational time than that implemented through computational fluid dynamics, the former is relatively more error-prone. Therefore, in this study, a cryogenic fuel tank to be incorporated in ships was established, and the boil-off rate (BOR), measured considering liquid nitrogen, was compared with that obtained using the finite element method. Insulation material with a cubic structure was applied to the cylindrical tank to increase the insulation performance and space efficiency. To predict the BOR through finite element analysis, the effective thermal conductivity was calculated through an empirical correlation and applied to the designed fuel tank. The calculation was predicted to within 1% of the minimum error, and the internal fluid behavior was evaluated by analyzing the vertical temperature profile according to the filling ratio.


2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


2021 ◽  
pp. 136943322110499
Author(s):  
Feleb Matti ◽  
Fidelis Mashiri

This paper investigates the behaviour of square hollow section (SHS) T-joints under static axial tension for the determination of stress concentration factors (SCFs) at the hot spot locations. Five empty and corresponding concrete-filled SHS-SHS T-joint connections were tested experimentally and numerically. The experimental investigation was carried out by attaching strain gauges onto the SHS-SHS T-joint specimens. The numerical study was then conducted by developing three-dimensional finite element (FE) T-joint models using ABAQUS finite element analysis software for capturing the distribution of the SCFs at the hot spot locations. The results showed that there is a good agreement between the experimental and numerical SCFs. A series of formulae for the prediction of SCF in concrete-filled SHS T-joints under tension were proposed, and good agreement was achieved between the maximum SCFs in SHS T-joints calculated from FE T-joint models and those from the predicted formulae.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Roman Kvasov ◽  
Lev Steinberg

This paper presents the numerical study of Cosserat elastic plate deformation based on the parametric theory of Cosserat plates, recently developed by the authors. The numerical results are obtained using the Finite Element Method used to solve the parametric system of 9 kinematic equations. We discuss the existence and uniqueness of the weak solution and the convergence of the proposed FEM. The Finite Element analysis of clamped Cosserat plates of different shapes under different loads is provided. We present the numerical validation of the proposed FEM by estimating the order of convergence, when comparing the main kinematic variables with an analytical solution. We also consider the numerical analysis of plates with circular holes. We show that the stress concentration factor around the hole is less than the classical value, and smaller holes exhibit less stress concentration as would be expected on the basis of the classical elasticity.


2019 ◽  
Vol 10 (2) ◽  
pp. 59-66
Author(s):  
E. A Biryuzova ◽  
A. S Glukhanov

Through pipelines of heat networks, due to their large length, a large amount of thermal energy is lost. Identification of technical solutions related to improving the energy efficiency of heating networks is an urgent task at present. The article is devoted to the consideration of options for laying pipelines of heat networks during design work. In the conducted studies, two main methods of underground laying of pipelines of heat networks with the choice of the most energy-efficient, with minimal losses of thermal energy are considered. Channel and channelless laying methods are investigated with the same design features and technological conditions of operation of pipelines of heat networks using the same thermal insulation material. For each option, the required thickness of the thermal insulation is determined by the normalized density of the heat flow, thermal calculations are performed to determine the heat loss and the value of the temperature fields generated around the operating pipelines of the heat networks. The obtained values of the thermal insulation thickness in the channel method of laying pipelines are 30-50 % lower than those in channelless laying. The heat loss values, according to the results of the heat calculation for the options under consideration, in the channel method of laying are reduced by 47-65 %. The temperature fields formed around the pipelines of thermal networks with channelless laying significantly exceed the natural value of the soil temperature at the depth of the pipeline. What has a great influence on the determination of the distance to adjacent pipelines and other utilities, laid underground, in the zone of the thermal network. A comparative analysis of the results obtained makes it possible to single out the choice of the method of laying the pipeline into a group of measures aimed at energy saving and increasing energy efficiency in heating systems.


Author(s):  
Henryk Zobel ◽  
Wojciech Karwowski ◽  
Agnieszka Golubińska ◽  
Thakaa Al-Khafaji

<p>The problem of bridge fires is growing. Because of a bad experience in Poland, it was decided to improve fire resistance of long span bridge structures, and of cable-stayed bridges in particular. Statistics shows that fire is a real threat to this kind of structure. They also confirm that the worst results of fire are for those with an orthotropic deck rather than with a concrete one. The basic problems to solve are how to predict fire resistance of a particular bridge and how to ensure safety and structural integrity of the bridge structure. Taking into account the fact that bridge standards do not include information relating to fire protection, and fire standards do not determine rules for design, construction and maintenance of such structures, there are no regulations for this problem. Fire scenarios are devoted to buildings, but the thermo-structural behavior of bridges is different.</p>


2020 ◽  
pp. 073168442093844 ◽  
Author(s):  
Navid Shekarchizadeh ◽  
Reza Jafari Nedoushan ◽  
Tohid Dastan ◽  
Hossein Hasani

This paper deals with investigating the tensile characteristics of biaxial weft-knitted reinforced composites in terms of stiffness, strength and failure mechanism. The biaxial weft-knitted fabric was produced on an electronic flat knitting machine by E-glass yarns and then was impregnated with epoxy resin. Using an accurate geometrical model, the composite unit cell was designed in Abaqus software’s environment. Tensile tests were simulated in different directions on the created unit cell and the stiffness was calculated. By applying the proper failure theories, the composite strength was predicted and then critical regions of the unit cell were determined. In the next step, a micromechanical approach was also applied to estimate the same tensile features. Failure theories were also applied to predict the strength and most susceptible areas for failure phenomenon in the composite unit cell. The tensile properties of the produced composites were measured and compared with outputs of the finite element and micromechanical approaches. The results showed that the meso-scale finite element analysis approach can well predict the composite strength. In contrast, the meso-scale analytical equation model was not able to predict it acceptably because this model ignores the strain concentration. Both meso-scale finite element analysis and meso-scale analytical equation approaches predicted the similar locations for the composite failure in wale and course directions.


Sign in / Sign up

Export Citation Format

Share Document