scholarly journals Ground Structures-Based Topology Optimization of a Morphing Wing Using a Metaheuristic Algorithm

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1311
Author(s):  
Seksan Winyangkul ◽  
Kittinan Wansaseub ◽  
Suwin Sleesongsom ◽  
Natee Panagant ◽  
Sumit Kumar ◽  
...  

This paper presents multi-objective topology and sizing optimization of a morphing wing structure. The purpose of this paper is to design a new aircraft wing structure with a tapered shape for ribs, spars, and skins including a torsion beam for external actuating torques, which is anticipated to modify the aeroelastic characteristic of the aircraft wing using multi-objective optimization. Two multi-objective topology optimization problems are proposed employing ground element structures with high- and low-grid resolutions. The design problem is to minimize mass, maximize difference of lift effectiveness, and maximize the buckling factor of an aircraft wing subject to aeroelastic and structural constraints including lift effectiveness, critical speed, and buckling factors. The design variables include aircraft wing structure dimensions and thickness distribution. The proposed optimization problems are solved by an efficient multi-objective metaheuristic algorithm while the results are compared and discussed. The Pareto optimal fronts obtained for all tests were compared based on a hypervolume metric. The objective function values for Case I and Case II at 10 selected optimal solutions exhibit a range of structural mass as 115.3216–411.6250 kg, 125.0137–440.5869 kg, lift effectiveness as 1.0514–1.1451, 1.0834–1.1639 and bucking factor as 38.895–1133.1864 Hz, 158.1264–1844.4355 Hz, respectively. The best results reveal unconventional aircraft wing structures that can be manufactured using additive manufacturing. This research is expected to serve as a foundation for future research into multi-objective topology optimization of morphing wing structures based on the ground element framework.

2021 ◽  
Vol 11 (14) ◽  
pp. 6463
Author(s):  
Saksan Winyangkul ◽  
Suwin Sleesongsom ◽  
Sujin Bureerat

The purpose of this paper is to design aircraft wing using reliability-based design optimization concerned to fuzzy uncertainty variables. A possibilistic safety index-based design optimization (PSIBDO) with fuzzy uncertainties is proposed to overcome difficult tasks from the original probabilistic problem. The design problem is to minimize mass of a composite aircraft wing subject to aeroelastic and structural constraints through consideration of the material properties are the uncertainties. The design variables include aircraft wing structure dimensions. The reliability-based design approach is needed to alleviate such a problem. Due to the complexity of the aircraft wing structures design and aeroelastic analysis, nonprobability-based design is an alternative choice to increase computational efficiency in the design process. The optimum results show the efficiency of our proposed approach.


2022 ◽  
Vol 54 (8) ◽  
pp. 1-34
Author(s):  
Ye Tian ◽  
Langchun Si ◽  
Xingyi Zhang ◽  
Ran Cheng ◽  
Cheng He ◽  
...  

Multi-objective evolutionary algorithms (MOEAs) have shown promising performance in solving various optimization problems, but their performance may deteriorate drastically when tackling problems containing a large number of decision variables. In recent years, much effort been devoted to addressing the challenges brought by large-scale multi-objective optimization problems. This article presents a comprehensive survey of stat-of-the-art MOEAs for solving large-scale multi-objective optimization problems. We start with a categorization of these MOEAs into decision variable grouping based, decision space reduction based, and novel search strategy based MOEAs, discussing their strengths and weaknesses. Then, we review the benchmark problems for performance assessment and a few important and emerging applications of MOEAs for large-scale multi-objective optimization. Last, we discuss some remaining challenges and future research directions of evolutionary large-scale multi-objective optimization.


2021 ◽  
Author(s):  
Nima Khodadadi ◽  
Siamak Talatahari ◽  
Armin Dadras Eslamlou

Abstract In the present paper, a physics-inspired metaheuristic algorithm is presented to solve multi-objective optimization problems. The algorithm is developed based on the concept of Newtonian cooling law that recently has been employed by the Thermal Exchange Optimization (TEO) algorithm to efficiently solve single-objective optimization problems. The performance of the multi-objective version of TEO (MOTEO) is examined through bi- and tri-objective mathematical problems as well as bi-objective structural design examples. According to the comparisons between the MOTEO and several well-known algorithms, the proposed algorithm can provide quality Pareto fronts with appropriate accuracy, uniformity and coverage for multi-objective problems.


Author(s):  
J. S. Rao ◽  
S. Kiran

This paper is concerned with an optimal concept design of aircraft wing from an airfoil. The airfoil itself is generated from CFD studies but there is no baseline of the wing structure. Topology optimization is recently applied for weight reduction given an operating baseline structure; here it is demonstrated that this optimization can be used to derive the concept of the wing structure directly. The optimized concept design is realized in to CAD and then a composite free-size optimization is performed to determine material distribution and ply drop regions etc. Finally a composite size and shape optimization is done and the ribs thus realized are presented.


Author(s):  
C. A.C. Coello

This chapter provides a brief introduction of the use of evolutionary algorithms in the solution of multi-objective optimization problems (an area now called “evolutionary multi-objective optimization”). Besides providing some basic concepts and a brief description of the approaches that are more commonly used nowadays, the chapter also provides some of the current and future research trends in the area. In the final part of the chapter, we provide a short description of the sort of applications that multi-objective evolutionary algorithms have found in finance, identifying some possible paths for future research.


Author(s):  
Andrea Toffolo

The research field on energy conversion systems presents a large variety of multi-objective optimization problems that can be solved taking full advantage of the features of evolutionary algorithms. In fact, design and operation of energy systems can be considered in several different perspectives (e.g., performance, efficiency, costs, environmental aspects). This results in a number of objective functions that should be simultaneously optimized, and the knowledge of the Pareto optimal set of solutions is of fundamental importance to the decision maker. This chapter proposes a brief survey of typical applications at different levels, ranging from the design of component detail to the challenge about the synthesis of the configuration of complex energy conversion systems. For sake of simplicity, the proposed examples are grouped into three main categories: design of components/component details, design of overall energy system, operation of energy systems. Each multi-objective optimization problem is presented with a short background and some details about the formulation. Future research directions in the field of energy systems are also discussed at the end of the chapter.


Author(s):  
Konstantinos E. Parsopoulos ◽  
Michael N. Vrahatis

The multiple criteria nature of most real world problems has boosted research on multi-objective algorithms that can tackle such problems effectively, with the smallest possible computational burden. Particle Swarm Optimization has attracted the interest of researchers due to its simplicity, effectiveness and efficiency in solving numerous single-objective optimization problems. Up-to-date, there are a significant number of multi-objective Particle Swarm Optimization approaches and applications reported in the literature. This chapter aims at providing a review and discussion of the most established results on this field, as well as exposing the most active research topics that can give initiative for future research.


2021 ◽  
Author(s):  
KAZUAKI KATAGIRI ◽  
CHOONG SIK PARK ◽  
SHIMPEI YAMAGUCHI ◽  
SONOMI KAWAKITA ◽  
KIM DAEKWI ◽  
...  

Aircraft flight control usually requires driving flaps and ailerons. However, the air drags increase significantly due to the corners of flaps and aileron. Especially, the gap between mother wing and flap / aileron causes a drag increase. Therefore, studies are being conducted on morphing wings that smoothly and greatly deform the wing surface. For aircraft wing, it is needless to say that strength is important to sustain lift and drag for the aircraft during the flight. For morphing wings, in addition, actuators must be mounted inside the wing to enable the morphing deformation. Moreover, for the aircraft wing, weight is quite important. Therefore, carbon fiber reinforced plastic (CFRP) is currently most suitable for aircraft wing structural materials. However, it is difficult to mold CFRP so that it has sufficient strength and can be morphed. In this study, by using CFRP, the morphing wing structure was prototyped with targeting a small unmanned aerial vehicle (UAV) weighing 3 kg. The CFRP lattice structure that enables morphing deformation was designed and manufactured by applying the electrodeposition resin molding (ERM) method which was developed by the authors. In the ERM method, firstly, the carbon fiber was fixed with a jig according to the designed morphing wing structure, and immersed in the electrodeposition solution. Secondly, the epoxy polymer particle in the solution were electrophoresed and impregnated between carbon fibers. After thermal curing, the morphing wing structure was fabricated. Further, the loading-unloading torsion and bending tests of the morphing wing structure were carried out. Smooth morphing deformation and sufficient strength were confirmed.


Sign in / Sign up

Export Citation Format

Share Document