Concept Design of Composite Aircraft Wing

Author(s):  
J. S. Rao ◽  
S. Kiran

This paper is concerned with an optimal concept design of aircraft wing from an airfoil. The airfoil itself is generated from CFD studies but there is no baseline of the wing structure. Topology optimization is recently applied for weight reduction given an operating baseline structure; here it is demonstrated that this optimization can be used to derive the concept of the wing structure directly. The optimized concept design is realized in to CAD and then a composite free-size optimization is performed to determine material distribution and ply drop regions etc. Finally a composite size and shape optimization is done and the ribs thus realized are presented.

2014 ◽  
Vol 889-890 ◽  
pp. 272-276
Author(s):  
Gang Tong ◽  
Tong Fei Liu ◽  
Yang Chen Deng

Introduces the characteristics of topology optimization and bionics, proposes the steps and method of using MSC.Patran to establish the model of the wing structure topology optimization, and through to illustrate the feasibility of the method and the application value of the wing structure topology optimization and bionics design. Key words: topological optimization; wing structure; bionics design ;finite element; MSC Patran;MSC Nastran


Author(s):  
Sreeram Polavarapu ◽  
Lonny L. Thompson ◽  
Mica Grujicic

Finite element analysis, together with topology and free-size optimization is used to design a lightweight die cast automotive front seat backrest frame when subjected to loads prescribed by ECE R17 European government regulations and additional loads which are predicted in an event of crash. In particular, an effort is made here to study the characteristics of a die cast automotive front seat backrest frame and develop a method for predicting the optimized material and support rib distribution which provides a lightweight seat which satisfies both strength and deflection requirements in a design space which includes the action of multiple load cases. An existing commercially available die cast backrest frame serves as the reference design space. Both 3D surface and solid models are created for representation as shell and solid finite element models for analysis. The objective function for topology optimization of the 3D solid model is to minimize mass of the component subject to stress and deflection constraints and is used as a guide in determining optimal geometric distribution of stiffening ribs. When the shell model of the reference seat is subjected to free-size optimization with this same constraint and objective given, an optimized material distribution measured by shell element thicknesses is obtained. For the topology optimization, manufacturing constraints of preferred draw direction and symmetry are applied in order to obtain an optimized material distribution which can be manufactured in the die-cast process. The procedure followed in this work generated an optimal material distribution and stiffening ribs in a lightweight die cast automotive seat backrest frame when subjected to multiple load cases. An overall reduction in weight of 13% is achieved over a reference commercially available die cast backrest frame component.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1311
Author(s):  
Seksan Winyangkul ◽  
Kittinan Wansaseub ◽  
Suwin Sleesongsom ◽  
Natee Panagant ◽  
Sumit Kumar ◽  
...  

This paper presents multi-objective topology and sizing optimization of a morphing wing structure. The purpose of this paper is to design a new aircraft wing structure with a tapered shape for ribs, spars, and skins including a torsion beam for external actuating torques, which is anticipated to modify the aeroelastic characteristic of the aircraft wing using multi-objective optimization. Two multi-objective topology optimization problems are proposed employing ground element structures with high- and low-grid resolutions. The design problem is to minimize mass, maximize difference of lift effectiveness, and maximize the buckling factor of an aircraft wing subject to aeroelastic and structural constraints including lift effectiveness, critical speed, and buckling factors. The design variables include aircraft wing structure dimensions and thickness distribution. The proposed optimization problems are solved by an efficient multi-objective metaheuristic algorithm while the results are compared and discussed. The Pareto optimal fronts obtained for all tests were compared based on a hypervolume metric. The objective function values for Case I and Case II at 10 selected optimal solutions exhibit a range of structural mass as 115.3216–411.6250 kg, 125.0137–440.5869 kg, lift effectiveness as 1.0514–1.1451, 1.0834–1.1639 and bucking factor as 38.895–1133.1864 Hz, 158.1264–1844.4355 Hz, respectively. The best results reveal unconventional aircraft wing structures that can be manufactured using additive manufacturing. This research is expected to serve as a foundation for future research into multi-objective topology optimization of morphing wing structures based on the ground element framework.


2021 ◽  
Vol 26 (2) ◽  
pp. 34
Author(s):  
Isaac Gibert Martínez ◽  
Frederico Afonso ◽  
Simão Rodrigues ◽  
Fernando Lau

The objective of this work is to study the coupling of two efficient optimization techniques, Aerodynamic Shape Optimization (ASO) and Topology Optimization (TO), in 2D airfoils. To achieve such goal two open-source codes, SU2 and Calculix, are employed for ASO and TO, respectively, using the Sequential Least SQuares Programming (SLSQP) and the Bi-directional Evolutionary Structural Optimization (BESO) algorithms; the latter is well-known for allowing the addition of material in the TO which constitutes, as far as our knowledge, a novelty for this kind of application. These codes are linked by means of a script capable of reading the geometry and pressure distribution obtained from the ASO and defining the boundary conditions to be applied in the TO. The Free-Form Deformation technique is chosen for the definition of the design variables to be used in the ASO, while the densities of the inner elements are defined as design variables of the TO. As a test case, a widely used benchmark transonic airfoil, the RAE2822, is chosen here with an internal geometric constraint to simulate the wing-box of a transonic wing. First, the two optimization procedures are tested separately to gain insight and then are run in a sequential way for two test cases with available experimental data: (i) Mach 0.729 at α=2.31°; and (ii) Mach 0.730 at α=2.79°. In the ASO problem, the lift is fixed and the drag is minimized; while in the TO problem, compliance minimization is set as the objective for a prescribed volume fraction. Improvements in both aerodynamic and structural performance are found, as expected: the ASO reduced the total pressure on the airfoil surface in order to minimize drag, which resulted in lower stress values experienced by the structure.


2021 ◽  
Vol 1057 (1) ◽  
pp. 012027
Author(s):  
Govindu Sandhya ◽  
Vemireddy Sri Rishitha ◽  
S Sriram ◽  
VM Sreehari

Designs ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 19
Author(s):  
Andreas K. Lianos ◽  
Harry Bikas ◽  
Panagiotis Stavropoulos

The design methodologies and part shape algorithms for additive manufacturing (AM) are rapidly growing fields, proven to be of critical importance for the uptake of additive manufacturing of parts with enhanced performance in all major industrial sectors. The current trend for part design is a computationally driven approach where the parts are algorithmically morphed to meet the functional requirements with optimized performance in terms of material distribution. However, the manufacturability restrictions of AM processes are not considered at the primary design phases but at a later post-morphed stage of the part’s design. This paper proposes an AM design method to ensure: (1) optimized material distribution based on the load case and (2) the part’s manufacturability. The buildability restrictions from the direct energy deposition (DED) AM technology were used as input to the AM shaping algorithm to grant high AM manufacturability. The first step of this work was to define the term of AM manufacturability, its effect on AM production, and to propose a framework to estimate the quantified value of AM manufacturability for the given part design. Moreover, an AM design method is proposed, based on the developed internal stresses of the build volume for the load case. Stress tensors are used for the determination of the build orientation and as input for the part morphing. A top-down mesoscale geometric optimization is used to realize the AM part design. The DED Design for Additive Manufacturing (DfAM) rules are used to delimitate the morphing of the part, representing at the same time the freeform mindset of the AM technology. The morphed shape of the part is optimized in terms of topology and AM manufacturability. The topology optimization and AM manufacturability indicator (TMI) is introduced to screen the percentage of design elements that serve topology optimization and the ones that serve AM manufacturability. In the end, a case study for proof of concept is realized.


Author(s):  
Shiguang Deng ◽  
Krishnan Suresh

Topology optimization is a systematic method of generating designs that maximize specific objectives. While it offers significant benefits over traditional shape optimization, topology optimization can be computationally demanding and laborious. Even a simple 3D compliance optimization can take several hours. Further, the optimized topology must typically be manually interpreted and translated into a CAD-friendly and manufacturing friendly design. This poses a predicament: given an initial design, should one optimize its topology? In this paper, we propose a simple metric for predicting the benefits of topology optimization. The metric is derived by exploiting the concept of topological sensitivity, and is computed via a finite element swapping method. The efficacy of the metric is illustrated through numerical examples.


Author(s):  
Hong Seok Park ◽  
Prakash Dahal

Sulfur polymer concrete (SPC) is relatively new material used to replace Portland cement for making drain pipes currently being manufactured by horizontal spun technology which produces non-homogenous material distribution and low strength pipes. Due to drawbacks of existing machine, there is a necessity to design molding machine with improved technology for assuring homogenous compaction of material. In this research, a new machine is designed where inner rotating core is the main component for mixing, compressing and giving final shape of product. So, it is necessary to optimize this part in terms of topology to ensure robust functionality. First, the concept of a new molding machine was designed through problem exploration, idea generation, concept evaluation, and design improvement. The alternative was generated in consideration of customer requirements by applying TRIZ principles to overcome drawback of existing machine. One of the concepts was selected using scoring techniques where concepts are presented and compared with varieties of evaluating criteria. Topology optimization with density method has applied to design inner rotating core part for mass reduction and thereby optimum utilization of design space. Suitable engineering model was built based on loads, boundary condition and constraints. Loads are applied on inner core walls during mixing and compressing of sulfur concrete. Objective is focused to minimize the developed topology by maximizing stiffness. Repeated structural analysis is done to obtain the convergence data for optimal design. Optimized finite element topology is generated as CAD model for size optimization. The optimization study provided response charts of different design variables. Sensitivity analysis of the input variables helped in identifying the importance of each design variable and their respective effects on the output model. Different design points are rated on optimization study and best design points are chosen for the final dimension of structure. CATIA, OptiStruct and ANSYS are tools used for concept design, optimization of topology. To the end optimal topology is compared with the initial designed part in terms of weight and displacement. It is concluded that topology optimized model maximizes overall stiffness resulting in better and innovative product design with enhanced performance.


Sign in / Sign up

Export Citation Format

Share Document