scholarly journals Emerging Interconnection Technology and Pb-Free Solder Materials for Advanced Microelectronic Packaging

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1941
Author(s):  
Byungmin Ahn

In the field of electronics packaging, Pb-bearing solder alloys are mostly used as robust interconnecting materials [...]

Author(s):  
Balint Medgyes ◽  
Sandor Adam ◽  
Lajos Tar ◽  
Vadimas Verdingovas ◽  
Rajan Ambat ◽  
...  

2016 ◽  
Vol 5 (4) ◽  
pp. 266-274
Author(s):  
Takeharu HAYASHI ◽  
Hirohiko WATANABE ◽  
Masaaki TAKABE ◽  
Yoshinori EBIHARA ◽  
Tatsuhiko ASAI ◽  
...  

2015 ◽  
Vol 830-831 ◽  
pp. 265-269
Author(s):  
Satyanarayan ◽  
K.N. Prabhu

In the present work, the bond strength of Sn-0.7Cu, Sn-0.3Ag-0.7Cu, Sn-2.5Ag-0.5Cu and Sn-3Ag-0.5Cu lead free solders solidified on Cu substrates was experimentally determined. The bond shear test was used to assess the integrity of Sn–Cu and Sn–Ag–Cu lead-free solder alloy drops solidified on smooth and rough Cu substrate surfaces. The increase in the surface roughness of Cu substrates improved the wettability of solders. The wettability was not affected by the Ag content of solders. Solder bonds on smooth surfaces yielded higher shear strength compared to rough surfaces. Fractured surfaces revealed the occurrence of ductile mode of failure on smooth Cu surfaces and a transition ridge on rough Cu surfaces. Though rough Cu substrate improved the wettability of solder alloys, solder bonds were sheared at a lower force leading to decreased shear energy density compared to the smooth Cu surface. A smooth surface finish and the presence of minor amounts of Ag in the alloy improved the integrity of the solder joint. Smoother surface is preferable as it favors failure in the solder matrix.


2018 ◽  
Vol 30 (4) ◽  
pp. 233-240 ◽  
Author(s):  
Md Hasnine

Purpose This paper aims to investigate the effect of In and Sb additions on the thermal behavior and wettability of Sn-3.5Ag-xIn-ySb (x = 0, 1.0 and 1.5 Wt.%, y = 0, 1.0, 1.4 and 2.1 Wt.%) solder alloys. Design/methodology/approach The thermal behavior of the Pb-free solder alloys was studied using differential scanning calorimetry. Wetting balance experiments were performed in accordance with the IPC standard, IPC-TM-650 and at a temperature of 260°C. Also, a solder spread test was performed on a Cu surface finish using the JIS-Z-3197 solderability standard. Findings It is shown that among the selected Sn-3.5Ag-xIn-ySb (x = 0, 1.0 and 1.5 Wt.%, y = 0, 1.0, 1.4 and 2.1 Wt.%) alloys, Sn-3.5Ag-1.5In-1Sb showed the lowest melting point and the lowest undercooling temperature. The best wettability was achieved when the In and Sb contents were approximately 1.5 and 1.0 Wt.%, respectively. The effect of the combined addition of In and Sb on solder spreadability on a Cu substrate was also demonstrated. Originality/value It was found that adding approximately 1.5 and 1.0 Wt.% of In and Sb, respectively, in Sn-3.5Ag solder provided the best wetting performance and improved the solder spreadability.


Sign in / Sign up

Export Citation Format

Share Document