scholarly journals Corner Strengthening by Local Thickening and Ausforming Using Planar Compression in Hot Stamping of Ultra-High Strength Steel Parts

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1977
Author(s):  
Tomoyoshi Maeno ◽  
Ken-ichiro Mori ◽  
Hiroki Homma ◽  
Ali Talebi-Anaraki ◽  
Ryohei Ikeda

Hot-stamped products are widely used for the body-in-white of an automobile as they are lightweight and improve crashworthiness. A hot-stamping process using planar compression was developed to strengthen corners of ultra-high strength parts by local thickening and hardening. In this process, the corners are thickened by compressing the blank in the planar direction with the upper and lower dies while blocking the movement of both edges with stoppers in the latter stage of forming. Thickening of the corners largely heightens the strength of the formed parts. Not only the thickness but also the hardness of the corner was increased by large plastic deformation and die quenching. For a hot hat-shaped part, a 30% increase in thickness and a 530 HV20 hardness around the corners were attained. The bending rigidity and strength of the formed parts thickened by 30% in the corners increased by 25% and 20%, respectively. In addition, the improvements of the part shape accuracy and the sidewall quenchability were obtained.

2009 ◽  
Vol 410-411 ◽  
pp. 255-261 ◽  
Author(s):  
Kenichiro Mori ◽  
Seijiro Maki ◽  
Shouichi Saito

Oxidation in hot stamping of ultra high strength steel sheets was prevented by coating the sheets with an oxidation preventive oil. For four types of oxidation preventive oil, the degree of oxidation under natural cooling of the heated sheets without forming was first evaluated. The oil that forms a liquefied film at elevated temperatures exhibited high oxidation prevention, and this oil was chosen for a hot bending experiment. Hot hat-shaped bending of the coated sheets using resistance heating was carried out to examine the properties of the products. The bending load was markedly decreased, the shape accuracy of bent products was very high, the surface roughness was similar to that of the sheet, and the hardness was about 1.5 times larger than that of the sheet before the bending due the die quenching. In addition, the layer remaining on the surface of the formed product could be removed using phosphoric acid. It was found that the hot stamping operation using the oxidation preventive oil is effective in the precision forming of ultra high strength steel sheets.


2012 ◽  
Vol 482-484 ◽  
pp. 2430-2437 ◽  
Author(s):  
De Sen Yang ◽  
Wen Liu ◽  
Guang Jun Hu ◽  
Jie Zhou ◽  
Zhu Su

To research the key factor that affect on material characteristic of hot stamping, this paper studied the spring-back problem of hot forming of the ultra-high strength steel, "U" shaped part by using the combination method of numerical simulation and experimental verification. By obtaining the data of BR1500 HS isothermal tensile test, it established a "U" shaped part of thermal-mechanical coupled model which is based on ABAQUS to analyze the influences of forming speed and holding time on the forming properties. Simulation analysis showed that: When the forming speed of sheet metal is faster than 35mm/s, the rebound value is small, and further increase has no significant effect on the rebound; after holding 6s, the temperature quenching would become stable. The results verify the reliability of the finite element model. Also the study has provided a theoretical basis for determining the process parameters of the type of steel hot forming.


2021 ◽  
Vol 64 ◽  
pp. 916-926
Author(s):  
Ali Talebi-Anaraki ◽  
Tomoyoshi Maeno ◽  
Ryohei Ikeda ◽  
Kazui Morishita ◽  
Ken-ichiro Mori

2008 ◽  
Vol 575-578 ◽  
pp. 299-304 ◽  
Author(s):  
Jun Bao ◽  
Zhong Wen Xing ◽  
Yu Ying Yang

The quenchable boron steel is a novel type of ultra high strength steel used for automotive parts so as to reduce the weight of the whole automobile. The hot stamping processing experiments for bending parts were studied. The influence of the hot stamping processing parameters, such as the heating temperature, the heat holding time and the cooling water flow velocity, on the mechanics properties and microstructure of the hot stamping parts is obtained. And then the optimal ranges of these parameters are determined, which provides a basis for the control of the hot stamping process applied in complicated shape parts’ production.


2016 ◽  
Vol 879 ◽  
pp. 1933-1938 ◽  
Author(s):  
Richard G. Thiessen ◽  
Georg Paul ◽  
Roland Sebald

Third-Generation advanced high strength steels are being developed with the goal of reducing the body-in-white weight while simultaneously increasing passenger safety. This requires not only the expected increase in strength and elongation, but also improved local formability. Optimizing elongation and formability were often contradictory goals in dual-phase steel developments. Recent results have shown that so-called "quench and partitioning" (Q&P) concepts can satisfy both requirements [1]. Many Q&P-concepts have been studied at thyssenkrupp Steel Europe. Thorough investigation of the microstructure has revealed relationships between features such as the amount, morphology and chemical stability of the retained austenite and the obtained mechanical properties. An evaluation of the lattice strain by means of electron-back-scattering-diffraction has also yielded a correlation to the obtained formability. The aim of this work is to present the interconnection between these microstructural features and propose hypotheses for the explanation of how these features influence the macroscopically observed properties.


2018 ◽  
Vol 15 ◽  
pp. 1119-1126 ◽  
Author(s):  
Yasutaka Suzuki ◽  
Ken-ichiro Mori ◽  
Tomoyoshi Maeno ◽  
Kazuki Sakakibara ◽  
Yohei Abe

2014 ◽  
Vol 1063 ◽  
pp. 237-243
Author(s):  
Zhong De Shan ◽  
Qin Tai Yan ◽  
Chao Jiang ◽  
Wen Juan Rong

Ultra High Strength Steel (UHSS) hot stamping technology is a special process which can enhance the steel tensile strength to 1500MPa. Appling this technology in producing vehicle structure parts can make car lighter and safer. In China there are more and more automobile enterprises adopt this technology. To master and extend the skill, China Academy of Machinery Science & Technology (CAM) have done systematic research, such as the strengthen mechanism of the steel, hot stamping key devices designing, forming and quenching integrated mould designing, stamping process parameters optimization, etc.. By now, CAM has mastered the mass production technology of vehicle parts, which can guarantee its shape and tensile strength, and produced such typical parts as door-beam, B pillar, etc.. The paper is an introduction of the research work and achievement about UHSS hot stamping developed by CAM.


Sign in / Sign up

Export Citation Format

Share Document