scholarly journals Strain Behavior of Nickel Alloy 200 during Multiaxial Forging through Finite Element Modeling

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 132 ◽  
Author(s):  
Faramarz Djavanroodi ◽  
Zahid Hussain ◽  
Osama Irfan ◽  
Fahad Al-Mufadi

Multiaxial forging (MAF) is one of the appealing methods of severe plastic deformation (SPD) techniques to fabricate ultrafine-grained (UFG) materials. In this study; the influence of process parameters such as strain rate; friction; and initial temperature has been assessed through finite element simulation of Nickel 200 alloy. The Johnson–Cook equation was applied in simulating the MAF process. The homogeneous microstructure of a material processed by MAF is an important requirement to obtain uniform mechanical and other properties. The uniformity in properties was evaluated by the investigation of the hardness measurements; effective strain (ES), and inhomogeneous factor (IF) or coefficient of standard deviation. The results showed that the inhomogeneous factor decreases with an increase in strain rate and decrease in temperature. It was found that a more homogeneous structure is observed with an increasing number of MAF cycles and the strain rate strain. Furthermore; the average grain size reduced from 850 nm to 220 nm after three cycles of MAF. Finally; experimental work was performed to validate the results.

2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1621-1626
Author(s):  
HYOUNG SEOP KIM

The technique of severe plastic deformation (SPD) enables one to produce metals and alloys with an ultrafine grain size of about 100 nm and less. As the mechanical properties of such ultrafine grained materials are governed by the plastic deformation during the SPD process, the understanding of the stress and strain development in a workpiece is very important for optimizing the SPD process design and for microstructural control. The objectives of this work is to present a constitutive model based on the dislocation density and dislocation cell evolution for large plastic strains as applied to equal channel angular pressing (ECAP). This paper briefly introduces the constitutive model and presents the results obtained with this model for ECAP by the finite element method.


2018 ◽  
Vol 10 (10) ◽  
pp. 168781401880733
Author(s):  
Yue Feng ◽  
Shoune Xiao ◽  
Bing Yang ◽  
Tao Zhu ◽  
Guangwu Yang ◽  
...  

Dynamic and quasi-static tensile tests of 5083P-O aluminium alloy were carried out using RPL100 electronic creep/fatigue testing machine and the split Hopkinson tension bar, respectively. The dynamic constitutive relation of the material at high strain rates was studied, and the constitutive model in accordance with Cowper–Symonds form was established. At the same time, a method to describe the constitutive relation of material using the strain rate interpolation method which is included in LS-DYNA software was proposed. The advantages and accuracy of this method were verified by comparing the results of the finite element simulation with the fitting results of the Cowper-Symonds model. The influence of material strain rate effect on squeezing force, energy absorption and deformation mode of the squeezing energy-absorbing structure based on the constitutive models of 5083P-O were studied by means of finite element simulation. The results show that when the strain rate of the structure deformation is low, the material strain rate strengthening effect has little influence on the structure. However, with the increase of the strain rate, the strengthening effect of the material will improve the squeezing force and the energy absorption of the structure, and will also influence the deformation mode, that is, the decrease of the deformation with high strain rates while the increase of the deformation with low strain rates.


2020 ◽  
Vol 0 (12) ◽  
pp. 10-16
Author(s):  
V.V. Avtaev ◽  
◽  
D. V. Grinevich ◽  
A. V. Zavodov

Yielding tests of VTI-4 alloy specimens have been carried out at temperature 1010 °C under conditions of high-speed loading. Based on the test results the modulus of elasticity as well as axial and radial residual deformation values in the end and central zones for each loading stage were determined. Fitting criteria for finite element simulation and the experiment are proposed with tracing VTI-4 alloy diagram deformation at temperature 1010 °C and strain rate of 2.5 sec–1. As a result of finite element simulation the relationship between the material structures obtained during high-speed yielding and the deflected modes in different zones was determined.


2012 ◽  
Vol 1372 ◽  
Author(s):  
Kuk Hyun Song ◽  
Hye Jin Lee ◽  
Han Sol Kim ◽  
Won Yong Kim

ABSTRACTThe present study was carried out to evaluate the microstructures and mechanical properties of severely deformed Ni-30Cr alloy. Cross-roll rolling (CRR) as severe plastic deformation (SPD) process was introduced and Ni-30Cr alloy sheets were cold rolled to a 90% thickness reduction and subsequently annealed at 700 °C for 30 min so as to obtain the recrystallized microstructure. For the analysis of grain boundary character distributions (GBCDs), electron back-scattered diffraction (EBSD) technique was introduced. CRR on Ni-30Cr alloy was effective to enhance the grain refinement through heat treatment; consequently, average grain size was significantly reduced from 33 μm in initial material to 0.6 μm in CRR processed material. This grain refinement directly affected the mechanical properties improvement, in which yield and tensile strengths were significantly increased than those of initial material. In this study, we systematically discussed the grain refinement, accompanying with increase in mechanical properties, in terms of the effective strain imposed by CRR, comparing with conventional rolling (CR).


2014 ◽  
Vol 852 ◽  
pp. 523-528
Author(s):  
Qin Xiang Xia ◽  
Liang Bo Ji ◽  
Bao Hua Cao ◽  
You Xiang Li

Blanking finite element analysis model of non-metallic material PET insulation spacer was established, and the influence of process parameters on blanking quality of insulation spacer was analyzed. The results show that the qualified cross-section quality, the high dimensional accuracy and the little bending distortion of blanking workpiece can be obtained by the reasonable blanking clearance and the higher blanking speed. The corresponding experiment was carried out, the results show that the process parameters of insulation spacer blanking obtained by numerical simulation are feasible, and the qualified insulation spacer was produced by the simulation results.


2008 ◽  
Vol 584-586 ◽  
pp. 579-584 ◽  
Author(s):  
Quang Hien Bui ◽  
Guy F. Dirras ◽  
A. Hocini ◽  
Salah Ramtani ◽  
Akrum Abdul-Latif ◽  
...  

Ultrafine-grained aluminum microstructures were processed from commercial purity powder by combining hot isostatic pressing (HIP) and dynamic severe plastic deformation (DSPD). After the first step, the bulk consolidated material showed a random texture and homogeneous microstructure of equiaxed grains with an average size of 2µm. The material was then subsequently impacted, using a falling weight at a strain rate of 300s-1. The resulting material showed a microstructure having an average grain size of about 500 nm with a strong gradient of fiber-like crystallographic texture parallel to the impact direction. The mechanical properties of the impacted material were subsequently characterized under compressive tests at room temperature at a strain rate of 10-4s-1. The effect of the change of the deformation path on the mechanical response parallel (DN) and perpendicular (DT) to the impact direction was also investigated. These results are here discussed in relation with microstructure and texture evolution.


Sign in / Sign up

Export Citation Format

Share Document