scholarly journals Microstructure of a V-Containing Cobalt Based Alloy Prepared by Mechanical Alloying and Hot Pressed Sintering

Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 464 ◽  
Author(s):  
Niannian Li ◽  
Fengshi Yin ◽  
Liu Feng

In this paper, a bulk V-containing cobalt-based alloy with high chromium and tungsten contents was prepared by mechanical alloying and hot pressed sintering using Co, Cr, W, Ni, V and C pure element powders. XRD, SEM, TEM and Vickers hardness tests were employed to characterize the microstructure and mechanical properties of the mechanical alloyed powders and hot pressed bulk cobalt-based alloy. The results show that all elements can be mixed uniformly and that the Co, Cr, and Ni elements were made into an amorphous state after 10 h ball milling in a high energy ball miller. The microstructure of the prepared bulk alloy was composed of a γ-Co matrix with a large number of nano-twins and fine M23C6 and M12C carbide particles well-distributed in the alloy. The V element was mainly distributed in M23C6-type carbide and no V-rich MC-type carbide was found in the microstructure. The prepared alloy had a high hardness of 960 ± 9.2 HV and good a fracture toughness KIc of about 10.5 ± 0.46 MPa·m1/2. The microstructure formation and strengthening mechanisms of the prepared cobalt-based alloy are discussed.

2012 ◽  
Vol 727-728 ◽  
pp. 281-286
Author(s):  
Fernando Luís Vieira de Sousa ◽  
Pedro Cordeiro Romio ◽  
Tibério Andrade Passos ◽  
Severino Jackson Guedes de Lima

The quasicrystals materials possess a combination of unusual properties, since they present a long range ordered atomic structure, which is not periodic. Because of this, these materials have been object of study of many researchers in the last few years. Currently, the research is focused on determining new techniques able to produce these materials in a large scale, as well as finding new utilities. One of the ways to do so, is to use quasicrystals as coating; another way is the fabrication of composites. In this paper, aluminum composites with the strengthening of quasicrystalline particles from the alloy Al59,2Cu25,5Fe12,3B3 in volumetric fractions of 6% to 20% were developed by high energy ball milling. The powders obtained by mechanical alloying was compacted at 300MPa, sintered and submitted to micro hardness tests. The characterization was made by X-ray diffraction and SEM. In the grinding we used a 2² factorial design with factors time and speed, and the hardness of composite as response. The specimens had an average hardness of 25.75GPa for reinforcement with 6% QC and 34.75GPa for reinforcement of 20% QC.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1225
Author(s):  
Cristina García-Garrido ◽  
Ranier Sepúlveda Sepúlveda Ferrer ◽  
Christopher Salvo ◽  
Lucía García-Domínguez ◽  
Luis Pérez-Pozo ◽  
...  

In this work, a blend of Ti, Nb, and Mn powders, with a nominal composition of 15 wt.% of Mn, and balanced Ti and Nb wt.%, was selected to be mechanically alloyed by the following two alternative high-energy milling devices: a vibratory 8000D mixer/mill® and a PM400 Retsch® planetary ball mill. Two ball-to-powder ratio (BPR) conditions (10:1 and 20:1) were applied, to study the evolution of the synthesized phases under each of the two mechanical alloying conditions. The main findings observed include the following: (1) the sequence conversion evolved from raw elements to a transitory bcc-TiNbMn alloy, and subsequently to an fcc-TiNb15Mn alloy, independent of the milling conditions; (2) the total full conversion to the fcc-TiNb15Mn alloy was only reached by the planetary mill at a minimum of 12 h of milling time, for either of the BPR employed; (3) the planetary mill produced a non-negligible Fe contamination from the milling media, when the highest BPR and milling time were applied; and (4) the final fcc-TiNb15Mn alloy synthesized presents a nanocrystalline nature and a partial degree of amorphization.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1276 ◽  
Author(s):  
Dariusz Garbiec ◽  
Volf Leshchynsky ◽  
Alberto Colella ◽  
Paolo Matteazzi ◽  
Piotr Siwak

Combining high energy ball milling and spark plasma sintering is one of the most promising technologies in materials science. The mechanical alloying process enables the production of nanostructured composite powders that can be successfully spark plasma sintered in a very short time, while preserving the nanostructure and enhancing the mechanical properties of the composite. Composites with MAX phases are among the most promising materials. In this study, Ti/SiC composite powder was produced by high energy ball milling and then consolidated by spark plasma sintering. During both processes, Ti3SiC2, TiC and Ti5Si3 phases were formed. Scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction study showed that the phase composition of the spark plasma sintered composites consists mainly of Ti3SiC2 and a mixture of TiC and Ti5Si3 phases which have a different indentation size effect. The influence of the sintering temperature on the Ti-SiC composite structure and properties is defined. The effect of the Ti3SiC2 MAX phase grain growth was found at a sintering temperature of 1400–1450 °C. The indentation size effect at the nanoscale for Ti3SiC2, TiC+Ti5Si3 and SiC-Ti phases is analyzed on the basis of the strain gradient plasticity theory and the equation constants were defined.


2012 ◽  
Vol 05 ◽  
pp. 496-501 ◽  
Author(s):  
S. SHEIBANI ◽  
S. HESHMATI-MANESH ◽  
A. ATAIE

In this paper, the influence of toluene as the process control agent (PCA) and pre-milling on the extension of solid solubility of 7 wt.% Cr in Cu by mechanical alloying in a high energy ball mill was investigated. The structural evolution and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The solid solution formation at different conditions was analyzed by copper lattice parameter change during the milling process. It was found that both the presence of PCA and pre-milling of Cr powder lead to faster dissolution of Cr . The mean crystallite size was also calculated and showed to be about 10 nm after 80 hours of milling.


2019 ◽  
Vol 810 ◽  
pp. 101-106 ◽  
Author(s):  
Petr Haušild ◽  
Jaroslav Čech ◽  
Veronika Kadlecová ◽  
Miroslav Karlík ◽  
Filip Průša ◽  
...  

In this paper, recently developed ternary FeAl20Si20 (wt.%) alloy with promising high-temperature oxidation and wear resistance was prepared by mechanical alloying in a high-energy ball mill. The possibility to speed-up the mechanical alloying process by replacing aluminium (and partly silicon) elemental powder by the pre-alloyed powder (AlSi30) with relatively fine dispersion of Si in the Al-Si eutectic was examined. The microstructure, phase composition and mechanical properties after various time of mechanical alloying were characterized. The effect of using the pre-alloyed powders on kinetics of mechanical alloying is compared with the results obtained on batches prepared from elemental powders.


1993 ◽  
Vol 8 (2) ◽  
pp. 239-241 ◽  
Author(s):  
P.J. Yvon ◽  
R.B. Schwarz

Mechanical alloying, a high-energy ball-milling technique, is now widely used for preparing alloy powders with metastable phases (crystalline or amorphous). The technique, however, may contaminate the powder with material eroded from the vial and milling media. We report on the analysis and effects of iron contamination on Al25Ge75 powders that we prepared by mechanically alloying mixtures of aluminum and germanium powders, using different mechanical alloying apparatuses.


2007 ◽  
Vol 353-358 ◽  
pp. 1625-1628 ◽  
Author(s):  
Gen Shun Ji ◽  
Qin Ma ◽  
Tie Ming Guo ◽  
Qi Zhou ◽  
Jian Gang Jia ◽  
...  

The high energy ball milling of Ni-50 atom % Si elemental powder mixtures was carried out using a planetary mill. X-ray diffraction (XRD) was used to identify the phase evolutions during the high energy ball milling period. The microstructure morphology of the powders milled different time was determined by field emission scanning electron microscope (FESEM). The beginning time of mechanical alloying was determined by back scattered electrons (BSE) images. The XRD patterns showed that the nickel peaks intensity and the silicon peaks intensity obviously decreased with milling time increased to 1 hour. BSE images revealed that nickel and silicon powders were not blended uniformly for 1 hour of milling. It was found that NiSi formed as the milling time increased to 5 hours, simultaneously, the nickel peaks and the silicon peaks almost disappeared. That means the obvious mechanical alloying started from 5 hours of milling. BSE images agreed with the result analyzed from XRD patterns. With the milling time further increased from 10 to 75 hours, the NiSi peaks decreased gradually, at the same time, the Ni2Si peaks appeared and then increased gradually.


2015 ◽  
Vol 13 ◽  
pp. 109-113 ◽  
Author(s):  
Cristina Daniela Stanciu ◽  
Florin Popa ◽  
Ionel Chicinaş ◽  
Olivier Isnard

Fe-Si alloy with a large Si content of 6.5 wt. % is obtained in nanocrystalline state by mechanical alloying of elemental iron and silicon powders. The mechanical alloying process was carried out using a high energy ball mill in argon atmosphere. Samples were collected after 0.5, 1, 2, 4, 6 and 8 hours of ball milling. The X-ray diffraction (XRD) studies indicate that after 4 hours of milling the Fe-Si alloy is formed. The powder magnetisation decreases upon increasing the milling time up to 4 hours as a consequence of the Fe-Si alloy formation. Upon heating, the DSC studies show the Fe3Si compound formation in the samples milled for milling times lower than 6 hours. Also, the Curie temperature of the alloy was evidenced.


Coatings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 273
Author(s):  
Ning Zhang ◽  
Nannan Zhang ◽  
Sheng Guan ◽  
Shumei Li ◽  
Guangwei Zhang ◽  
...  

The NiCr–TiB2–ZrB2 composite coating was deposited on the surface of blades made of steel (SUS304) using high-energy ball milling technology and air plasma spraying technology, which aimed to relieve the wear of the blades during operation. The influence of titanium diboride (TiB2) and zirconium diboride (ZrB2) on the microstructure and wear resistance of the coatings was investigated by X-ray diffraction, scanning electron microscopy, Vickers microhardness tester, and a wear tester. The results showed that the TiB2 and ZrB2 particles were unevenly distributed in the coatings and significantly increased the hardness and anti-wear, which contributed to their ultra-high hardness and extremely strong ability to resist deformation. The performance of the coatings was improved with the increase of the number of ceramic phases, while the hardness and wear resistance of the coating could reach their highest value when the TiB2 and ZrB2 respectively took up 15 wt.% of the total mass of the powder.


Author(s):  
José Luis Iturbe-García ◽  
Manolo Rodrigo García-Núñez ◽  
Beatriz Eugenia López-Muñoz

Mg2Ni was synthesized by a solid state reaction from the constituent elemental powder mixtures via mechanical alloying. The mixture was ball milled for 10 h at room temperature in an argon atmosphere. The high energy ball mill used here was fabricated at ININ. A hardened steel vial and three steel balls of 12.7 mm in diameter were used for milling. The ball to powder weight ratio was 10:1. A small amount of powder was removed at regular intervals to monitor the structural changes. All the steps were performed in a little lucite glove box under argon gas, this glove box was also constructed in our Institute. The structural evolution during milling was characterized by X-ray diffraction and scanning electron microscopy techniques. The hydrogen reaction was carried out in a micro-reactor under controlledconditions of pressure and temperature. The hydrogen storage properties of mechanically milled powders were evaluated by using a TGA system. Although homogeneous refining and alloying take place efficiently by repeated forging, the process time can be reduced to one fiftieth of the time necessary for conventional mechanical milling and attrition.        


Sign in / Sign up

Export Citation Format

Share Document