scholarly journals Quantitative Analysis of Inclusion Engineering on the Fatigue Property Improvement of Bearing Steel

Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 476 ◽  
Author(s):  
Chao Gu ◽  
Min Wang ◽  
Yanping Bao ◽  
Fuming Wang ◽  
Junhe Lian

The fatigue property is significantly affected by the inner inclusions in steel. Due to the inhomogeneity of inclusion distribution in the micro-scale, it is not straightforward to quantify the effect of inclusions on fatigue behavior. Various investigations have been performed to correlate the inclusion characteristics, such as inclusion fraction, size, and composition, with fatigue life. However, these studies are generally based on vast types of steels and even for a similar steel grade, the alloy concept and microstructure information can still be of non-negligible difference. For a quantitative analysis of the fatigue life improvement with respect to the inclusion engineering, a systematic and carefully designed study is still needed to explore the engineering dimensions of inclusions. Therefore, in this study, three types of bearing steels with inclusions of the same types, but different sizes and amounts, were produced with 50 kg hot state experiments. The following forging and heat treatment procedures were kept consistent to ensure that the only controlled variable is inclusion. The fatigue properties were compared and the inclusions that triggered the fatigue cracks were analyzed to deduce the critical sizes of inclusions in terms of fatigue failure. The results show that the critical sizes of different inclusion types vary in bearing steels. The critical size of the spinel is 8.5 μm and the critical size of the calcium aluminate is 13.5 μm under the fatigue stress of 1200 MPa. In addition, with the increase of the cleanliness of bearing steels, the improvement of fatigue properties will reach saturation. Under this condition, further increasing of the cleanliness of the bearing steel will not contribute to the improvement of fatigue property for the investigated alloy and process design.

Author(s):  
Md. Shamimur Rahman ◽  
Daisuke Yonekura ◽  
Takeshi Katsuma ◽  
Ri-Ichi Murakami

PVD technique incorporating CrN coating was applied to the titanium alloy (Ti-6Al-4V) and its effects on the fatigue life and fatigue strength were studied in this paper to explore the fatigue behavior of Ti-6Al-4V specimens. A CrN film deposited by arc ion plating (AIP) improved the mechanical properties; specially hardness and fatigue life of Ti-6Al-4V specimens. The properties were studied using XRD, hardness and fatigue testers. The fatigue life of CrN-coated Ti-6Al-4V specimens was improved significantly compared to those of uncoated specimens. The enhanced fatigue life can be attributed to the improved hardness of CrN film due to change of bias voltage during the film deposition. The initiation of fatigue cracks is likely to be retarded by the presence of hard and strong layers on the substrate surface. It has been determined that the fatigue fracture of the substrate-coating composite is dominated by the fracture of the CrN film since fatigue cracks have been observed to form first at the surface of the film and subsequently to propagate towards the substrate. It has also been concluded that the increase in fatigue properties of the coated substrate is associated mainly with the changing of bias voltage during the coating observed in most of the maximum alternating stress range explored in this work.


2017 ◽  
Vol 1142 ◽  
pp. 23-30 ◽  
Author(s):  
Jin Hui Du ◽  
Xu Dong Lu ◽  
Qun Deng

IN718 alloy possesses excellent mechanical properties at high temperatures, good process ability, therefore, it has been widely used in aero engine turbine disks, compressor disks, and power turbine shafts (i.e., rotating components). The fatigue properties of the alloy are a key factor that determines the safety and reliability of the engine. In this paper, the fatigue properties of IN718 alloy are investigated under low-and middle-frequency conditions at 600 °C and 455 °C, the initiation of fatigue cracks, and the relation between fatigue life and grain size are discussed. The results show that the carbides response as a crack initiation site at low-frequency fatigue condition (1 Hz), and string-type or heap-type carbides distribution promotes crack propagation and shortens fatigue life, the twin boundaries in large grains are act as a crack initiation site at middle-frequency fatigue condition (10 Hz). The grain size is smaller, and the low cycle fatigue properties of the alloy are better.


2019 ◽  
Vol 9 (9) ◽  
pp. 1120-1126
Author(s):  
Baohua Nie ◽  
Zihua Zhao ◽  
Dongchu Chen ◽  
Fangjun Liu ◽  
Jishi Zhao ◽  
...  

Very high cycle fatigue (VHCF) behavior of the diffusion bonded joints between 3Cr13 and 2Cr13 were investigated. Results showed that the diffusion bonded joints obtained a comparable fatigue property of 2Cr13, and the S–N curves exhibited a decreasing shape characteristic. However, fatigue life was dramatically decreased by occasional non-diffusion defects. Fatigue cracks in diffusion bonded joints occurred at specimen's surface in high cycle regimes, whereas VHCF cracks were originated from inclusions on the side of 2Cr13 based materials, in which the fine granular area (FGA) characteristics were observed around the internal inclusion. Furthermore, fatigue strength of the diffusion joints was interpreted based on the Murakami model. The crack propagation life estimated by Paris-Hertzberg-McClintock model mainly contributed for the fatigue life of the specimens with occasional non-fusion defects, in which non-fusion defects acted as pre-cracks.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Zhiwei Wu ◽  
Maosheng Yang ◽  
Kunyu Zhao

The new generation of bearing steel has good comprehensive properties, which can satisfy most of the requirements of bearing steel in a complex environment. In the presented work, fatigue properties of 15Cr14Co12Mo5Ni2 bearing steel have been investigated by means of rotating bending fatigue tests on smooth bar specimens after carburization and heat treatment. Optical microscope, scanning electron microscopy, electron backscatter diffraction, and Image-Pro Plus software were used to analyze the fracture, microstructure, and carbides. The results suggest that the fatigue strength at room temperature and 500 °C is 1027 MPa and 585 MPa, respectively. Scanning electron micrographic observations on the fracture surface of the fatigue specimens at 500 °C show that fatigue cracks usually initiate from voids in the carburized case and oxide layer on the surface of steel. The failure mode in the carburized case is a quasi-cleavage fracture, and with the increase of crack propagation depth, the failure mode gradually changes to fatigue and creep-fatigue interaction. With the increase of the distance from the surface, the size of the martensite block decreases and the fracture surface shows great fluctuation.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Pavlo Maruschak ◽  
Sergey Panin ◽  
Iryna Danyliuk ◽  
Lyubomyr Poberezhnyi ◽  
Taras Pyrig ◽  
...  

AbstractThe study has established the main regularities of a fatigue failure of offshore gas steel pipes installed using S-lay and J-lay methods.We have numerically analyzed the influence of preliminary deformation on the fatigue life of 09Mn2Si steel at different amplitudes of cyclic loading. The results have revealed the regularities of formation and development of a fatigue crack in 17Mn1Si steel after 40 years of underground operation. The quantitative analysis describes the regularities of occurrence and growth of fatigue cracks in the presence of a stress concentration.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 843 ◽  
Author(s):  
André Reck ◽  
André Till Zeuner ◽  
Martina Zimmermann

The study presented investigates the fatigue strength of the (α+β) Ti-6Al-4V-ELI titanium alloy processed by laser cutting with and without mechanical post-processing. The surface quality and possible notch effects as a consequence of non-optimized intermediate cutting parameters are characterized and evaluated. The microstructural changes in the heat-affected zone (HAZ) are documented in detail and compared to samples with a mechanically post-processed (barrel grinding, mechanical polishing) surface condition. The obtained results show a significant increase (≈50%) in fatigue strength due to mechanical post-processing correlating with decreased surface roughness and minimized notch effects when compared to the surface quality of the non-optimized laser cutting. The martensitic α’-phase is detected in the HAZ with the formation of distinctive zones compared to the initial equiaxial α+β microstructure. The HAZ could be removed up to 50% by means of barrel grinding and up to 100% through mechanical polishing. A fracture analysis revealed that the fatigue cracks always initiate on the laser-cut edges in the as-cut surface condition, which could be assigned to an irregular macro and micro-notch relief. However, the typical characteristics of the non-optimized laser cutting process (melting drops and significant higher surface roughness) lead to early fatigue failure. The fatigue cracks solely started from the micro-notches of the surface relief and not from the dross. As a consequence, the fatigue properties are dominated by these notches, which lead to significant scatter, as well as decreased fatigue strength compared to the surface conditions with mechanical finishing and better surface quality. With optimized laser-cutting conditions, HAZ will be minimized, and surface roughness strongly decreased, which will lead to significantly improved fatigue strength.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 495
Author(s):  
Ruslan Sikhamov ◽  
Fedor Fomin ◽  
Benjamin Klusemann ◽  
Nikolai Kashaev

The objective of the present study was to estimate the influence of laser shock peening on the fatigue properties of AA2024-T3 specimens with a fastener hole and to investigate the possibility to heal the initial cracks in such specimens. Fatigue cracks of different lengths were introduced in the specimens with a fastener hole before applying laser shock peening. Deep compressive residual stresses, characterized by the hole drilling method, were generated into the specimens by applying laser shock peening on both sides. Subsequently, the specimens were subjected to fatigue tests. The results show that laser shock peening has a positive effect regarding the fatigue life improvement in the specimens with a fastener hole. In addition, laser shock peening leads to a healing effect on fatigue cracks. The efficiency of this effect depends on the initial crack length. The effect of laser shock peening on the fatigue life periods was determined by using resonant frequency graphs.


1994 ◽  
Vol 38 ◽  
pp. 455-461
Author(s):  
R. Lin ◽  
B. Jaensson ◽  
T. M. Holden ◽  
R. B. Rogge ◽  
J. H. Root

Sleeve coldworking (SCW) is a mechanical process used in the aircraft industry to strengthen fastener holes of structural parts. By cold-expanding the holes, compressive residual stresses and a high dislocation density are introduced around the holes, the effect of which is to counteract the initiation and propagation of fatigue cracks and thus increase the fatigue life of the parts. The knowledge of residual stress due to SCW is therefore crucial for assessing the fatigue properties of a treated part. In this study, residual stresses were investigated, by employing neutron and X-ray diffraction methods, in a lug specimen that was sleeve coldworked and fatigued. The specimen had been used for testing the influence of the SCW process on fatigue life and crack propagation behaviour under constant amplitude or variable amplitude cyclic loading.


2019 ◽  
Vol 54 (2) ◽  
pp. 105-115
Author(s):  
Fengmei Xue ◽  
Fuguo Li ◽  
Xiaolei Cui

The ultimate tensile strength and fatigue life of plate with cold worked hole under high loading are always key designing parameters in engineering field. In this article, different cold expanded degrees (ranging from 1.69% to 11.11%) are applied to plate specimens with a central hole, made of 7050-T7451 aluminum alloy. The damage and fatigue properties are investigated by the three-dimensional finite element method with a user subroutine embedded into a void evolution model under complex stress states. The damage analysis indicates that plastic damage becomes critical when the cold expanded degree is larger than 7.14%, which does not suit for further service due to the loss of toughness. The cold expanded degree of 5.26% is identified as the best. It can be found that the fatigue life improves with the increased cold expanded degree. The small cold expanded degree leads to poor strengthening effect because of lacking sufficient residual stress, while large cold expanded degree makes micro-cracks emerge, which is beneficial to the increase in strengthening. All these results prove that the numerical analysis can accurately predict fatigue behavior of AA7050-T7451 plate based on our proposed approach, which is expected to be a powerful method in engineering field.


MRS Advances ◽  
2019 ◽  
Vol 4 (43) ◽  
pp. 2309-2317
Author(s):  
Fang Wang ◽  
Xue-Mei Luo ◽  
Dong Wang ◽  
Peter Schaaf ◽  
Guang-Ping Zhang

ABSTRACTFatigue properties of Mo/W multilayers with individual layer thickness (λ) of 5, 20, 50 and 100 nm on flexible polyimide substrates were investigated. The experimental results show that the fatigue resistance increases with decreasing λ from 100 nm to 20 nm, and reaches the maximum at λ=20 nm, and then decreases when further decreasing λ. Fatigue cracks of Mo/W multilayers with different λ were found to propagate along columnar grain boundary in the out-of-plane direction and along the boundary of cluster structures. The enhanced fatigue resistance is attributed to the larger cluster inclination angles and the more tortuous in-plane cracking paths.


Sign in / Sign up

Export Citation Format

Share Document