scholarly journals Recoveries of Ru(III) and Co(II) by Solvent Extraction and Ion Exchange from Tungsten Carbide-Cobalt Scrap through a HCl Leaching Solution

Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 858 ◽  
Author(s):  
Hyeong Hun Ahn ◽  
Man Seung Lee

The addition of ruthenium to tungsten carbide-cobalt hard metals improves their mechanical properties. Since ruthenium is a platinum group metal, the recovery of ruthenium together with cobalt from the scrap of hard metals is of great importance. In order to develop a recovery process of ruthenium and cobalt, separation experiments were performed from the synthetic HCl leaching solution of the scrap of hard metals. In this work, solvent extraction and ion exchange were employed to investigate the separation behavior of the two metal ions as a function of HCl concentration. Ru(III) was selectively extracted over Co(II) by Aliquat 336 (trioctyl methylammonium chloride) and Alamine 300 (tri-n-octyl amine) when HCl concentration was lower than 5 M. The highest separation factor between Ru(III) and Co(II) was obtained at 3 M HCl. The loaded Ru(III) was stripped from Aliquat 336 by dilute HCl solution. Only Ru(III) was loaded into the anion exchange resins employed in this work in the HCl concentration range from 1 to 9 M. The highest loading percentage of Ru(III) was obtained from 3 M HCl solution. The loading of Ru(III) into anion exchange resins followed Freundlich isotherm and the loading capacity of the resins were determined. The loaded Ru(III) was eluted by the mixture of HCl and thiourea. Compared to solvent extraction, ion exchange was found to be more efficient to separate Ru(III) and Co(II) from the HCl solution in terms of separation factor and the ease of operation.

Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 243 ◽  
Author(s):  
Wei Dong Xing ◽  
Man Seung Lee

The demand for noble metals is increasing, owing to their excellent chemical and physical properties. In order to meet the demand, the recovery of noble metals with high purity from diverse secondary resources, which contain small amounts of noble metals, is of immense value. In this work, the possibility of the separation of Au(III), Pd(II), Pt(IV), Rh(III), and Ir(IV) by solvent extraction from a synthetic HCl solution is investigated. Only Au(III) was selectively extracted by Cyanex 272 in the HCl concentration range from 0.5 M to 9 M, leaving the other metal ions in the raffinate. The loaded Au(III) in Cyanex 272 was efficiently stripped by (NH2)2CS. The other four noble metals were sequentially separated on the basis of the procedures reported in the previous work. The mass balance showed that about 98% of each metal, except Pt(IV), was recovered by the proposed process. An efficient process for the recovery of the five noble metal ions from the HCl leaching solution of secondary resources containing these metals can be developed.


2012 ◽  
Vol 53 (11) ◽  
pp. 2034-2037 ◽  
Author(s):  
Sung-Ho Joo ◽  
Young-Uk Kim ◽  
Jin-Gu Kang ◽  
J. Rajesh Kumar ◽  
Ho-Sung Yoon ◽  
...  

Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 112 ◽  
Author(s):  
Wei Xing ◽  
Man Lee ◽  
Seung Choi

Ion exchange and cementation experiments were done to separate silver(I) from a raffinate containing silver(I), nickel(II), and zinc(II) and small amounts of copper(II) and tin(II). The raffinate resulted from the recovery of gold(III), tin(II) and copper(II) by solvent extraction from a leaching solution of anode slime. Ion exchange with anionic resins was not effective in separating silver(I) because tin(II) and zinc(II) were selectively adsorbed into the anionic resins. It was possible to separate silver(I) by cementation with copper sheet. Treatment of the cemented silver with nitric acid solution increased the purity of silver(I) in the solution from 50.9% to 99.99%. Adjusting the pH of the AgNO3 solution to higher than 6, followed by adding ascorbic acid as a reducing agent, led to the synthesis of silver particles with micron size.


1999 ◽  
Vol 40 (9) ◽  
pp. 173-182 ◽  
Author(s):  
Joachim Fettig

This paper gives an overview over the ability of four different sorbent media, activated carbon, anion exchange resins, carbonaceous resins and metal oxides, for the removal of humic sustances. Both sorbent characteristics and solution parameters that affect the ultimate capacities are discussed, and approaches developed in order to describe sorption equilibria and rate of uptake are reported. In addition, successes and failures of predictive models are described. Some general conclusions about favorable conditions for the removal of humic substances by sorption processes are given.


1970 ◽  
Vol 42 (11) ◽  
pp. 1287-1290 ◽  
Author(s):  
Hari Dutta. Sharma ◽  
Natarajan. Subramanian

Sign in / Sign up

Export Citation Format

Share Document