scholarly journals A Study on the Influences of Welding Position on the Keyhole and Molten Pool Behavior in Laser Welding of a Titanium Alloy

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1082
Author(s):  
Baohua Chang ◽  
Zhang Yuan ◽  
Hao Cheng ◽  
Haigang Li ◽  
Dong Du ◽  
...  

Various welding positions need be used in laser welding of structures with complex configurations. Therefore, it is necessary to gain knowledge of how the welding positions can influence the keyhole and weld pool behavior in order to better control the laser weld quality. In the present study, a computational fluid mechanics (CFD) model was constructed to simulate the laser-welding process of the titanium alloy Ti6Al4V, with which the keyhole stability and the fluid flow characteristics in weld pool were studied for four welding positions, i.e., flat welding, horizontal welding, vertical-up welding, and vertical-down welding. Results showed that the stability of the keyhole was the best in flat welding, the worst in horizontal welding, and moderate in vertical welding positions. Increasing heat input (the ratio of laser power to welding speed) could increase the keyhole stability. When the small heat input was used, the dimensions and flow patterns of weld pools were similar for different welding positions. When the heat input was increased, the weld pool size was increased, and the fluid flow in the weld pool became turbulent. The influences of gravity became significant when a large heat input was used, especially for laser welding with vertical positions. Too high a heat input in vertical-up laser welding would lead to oscillation and separation of molten metal around the keyhole, and in turn result in burn-through holes in the laser weld. Based on the present study, moderate heat input was suggested in positional laser welding to generate a stable keyhole and, meanwhile, to guarantee good weld quality.

Author(s):  
J. Hu ◽  
H. L. Tsai

The use of dual or multiple laser beams is necessary for welding thick-section metals, especially for Nd:Yag lasers which are limited to relatively low power as compared to CO2 lasers. It was also reported that the use of dual laser beams for welding can increase keyhole stability leading to a better weld quality. So far, the development of dual-beam laser welding technologies has been in the experimental stage. The objective of this paper is to develop mathematical models and the associated numerical techniques to calculate the transient heat transfer and fluid flow in the weld pool and to study weld pool dynamics during the dual-beam laser welding process. The simulation was conducted for a three-dimensional stationary dual-beam laser welding. A very interesting change of the top-surface view of the weld pool was predicted. During the welding process, the top-view shape of the weld pool changes, starting from an oval-shape with the long-axis connecting the centers of the two laser beams, to a circle, and finally to an oval-shape with the short-axis connecting the centers of the two laser beams. Although a direct comparison with published experimental observation is impossible (due to the lack of detailed experimental data), the predicted weld pool shape is similar to that observed from experiments. The dynamical change of the weld pool shape can be well explained by the predicted fluid flow field.


2018 ◽  
Vol 8 (10) ◽  
pp. 1997 ◽  
Author(s):  
Yu Zhan ◽  
Enda Zhang ◽  
Yiming Ge ◽  
Changsheng Liu

Laser welding is widely used in titanium alloy welding due to its high energy density, small heat affected zone, and rapid processing ability. However, problems with laser welding, such as deformation and cracking caused by residual stress, need to be resolved. In this paper, the residual stress in laser welding of TC4 titanium alloy was studied using an ultrasonic laser. The residual stress in titanium alloy plates is considered a plane stress state. A pre-stress loading method is proposed and acoustoelastic coefficients are obtained. Based on the known acoustoelastic coefficients, the transverse and longitudinal residual stresses in laser welding are measured using an ultrasonic laser. The results show that longitudinal residual stress is greater than the transverse stress. The distribution regularity of the residual stress is similar to normal welding, but the tensile stress zone is much narrower. Then, the influence of heat input and welding speed on residual stress is discussed. With increasing heat input, the welding zone widens, and the peak value of the residual stress increases. A higher welding speed should be chosen when the welding power is constant. This research has important significance for the measurement and control of residual stress in the laser welding process.


2021 ◽  
Vol 1018 ◽  
pp. 13-22
Author(s):  
Zhi Guo Gao

The thermal metallurgical modeling of liquid aluminum supersaturation was further developed through couple of heat transfer model, dendrite selection model, multicomponent dendrite growth model and nonequilibrium solidification model during three-dimensional nickel-based single-crystal superalloy weld pool solidification. The welding configuration plays more important role in supersaturation of liquid aluminum, morphology instability and nonequilibrium partition behavior. The bimodal distribution of liquid aluminum supersaturation along the solid/liquid interface is crystallographically symmetrical about the weld pool centerline in (001) and [100] welding configuration. The distribution of liquid aluminum supersaturation along the solid/liquid interface is crystallographically asymmetrical throughout the weld pool in (001) and [110] welding configuration. Optimum low heat input (low laser power and high welding speed) with (001) and [100] welding configuration is more favored to predominantly promote epitaxial [001] dendrite growth to reduce the metallurgical factors for solidification cracking than that of high heat input (high laser power and slow welding speed) with (001) and [110] welding configuration. The lower the heat input is used, the lower supersaturation of liquid aluminum is imposed, and the smaller size of vulnerable [100] dendrite growth region is incurred to ameliorate solidification cracking susceptibility and vice versa. The overall supersaturation of liquid aluminum in (001) and [100] welding configuration is beneficially smaller than that of (001) and [110] welding configuration regardless of heat input, and is not thermodynamically relieved by gamma prime γˊ phase. (001) and [110] welding configuration is detrimental to weldability and deteriorates the solidification cracking susceptibility because of unfavorable crystallographic orientations and alloying aluminum enrichment. The mechanism of asymmetrical solidification cracking because of crystallography-dependent supersaturation of liquid aluminum is proposed. The eligible solidification cracking location is particularly confined in [100] dendrite growth region. Moreover, the theoretical predictions agree well with the experiment results. The useful modeling is also applicable to other single-crystal superalloys with similar metallurgical properties for laser welding or laser cladding. The thorough numerical analyses facilitate the understanding of weld pool solidification behavior, microstructure development and solidification cracking phenomena in the primary γ phase, and thereby optimize the welding conditions (laser power, welding speed and welding configuration) for successful crack-free laser welding.


2016 ◽  
Vol 1 (2) ◽  
pp. 51-58 ◽  
Author(s):  
Grzegorz Krolczyk ◽  
Aleksandar Sedmak ◽  
Uday Kumar ◽  
Somnath Chattopadhyaya ◽  
A. K. Das ◽  
...  

Author(s):  
Z. Zhou ◽  
W. H. Zhang ◽  
H. L. Tsai ◽  
S. P. Marin ◽  
P. C. Wang ◽  
...  

Hybrid laser-MIG welding technology has several advantages over laser welding alone or MIG welding alone. These include the possibility of modifying weld bead shape including the elimination of undercut, the change of weld compositions, and the reduction of porosity formation in the weld. Although the hybrid laser-MIG welding method is becoming popular in industry, its development has been based on the trial-and-error procedure. In this paper, mathematical models and the associated numerical techniques were developed to calculate the heat and mass transfer and fluid flow during the laser-MIG welding process. The continuum formulation was used to handle solid phase, liquid phase, and mushy zone during the melting and solidification processes. The volume-of-fluid (VOF) method was employed to handle free surfaces, and the enthalpy method was used for latent heat. The absorption (Inverse Bremsstrahlung and Fresnel absorption) and the thermal radiation by the plasma in the keyhole, and multiple reflections at the keyhole wall were all considered in the models. The transient keyhole dynamics, interactions between droplets and weld pool, and the shape and composition of the solidified weld bead were all predicted for both the pulsed laser-MIG welding and three-dimensional moving laser-MIG welding. Computer animations showing the fluid flow, weld pool dynamics, and the interaction between droplets and weld pool will be shown in the presentation.


2009 ◽  
Vol 83-86 ◽  
pp. 611-615
Author(s):  
Numan Abu-Dheir ◽  
Bekir Sami Yilbas

Laser welding of steel 316L sheets is considered and the effects of laser welding parameters on the laser weld quality and metallurgical changes in the weld section are presented. The laser weld quality is assessed through careful examination of weld geometrical features, and the resulting weld microstructure. Metallurgical changes in the weld sites are examined using optical, and electron scanning microscope (SEM). Two levels of heat inputs are used-1500W and 2000W; and two scanning speeds of 2cm/s and 4cm/s are used to laser weld 316L sheets. It is found that at the high laser power intensities, evaporation takes place in the irradiated region and as the laser power intensity increases further, a cavity is formed at the top surface of the welding cross section. A similar situation is also observed as the laser scanning speed reduces. The low diffusivity of the alloying elements at high temperatures preserves the segregation profile. The scattered partitioning of the cells and dendrite boundaries are observed due to the presence of Cr and Mo.


1991 ◽  
Vol 113 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Elijah Kannatey-Asibu

The high cooling rates normally encountered in the application of high intensity welding processes such as laser beam welding is often detrimental to the weldment, especially for high hardenability steels. To minimize this effect, the split-beam laser welding concept is proposed and analyzed. The analysis shows that even when the intensity of the single heat source is the same as the intensity of each of the dual heat sources, the resulting cooling rate at any specific temperature is lower for the dual source process than the single source process. For example, for mild steel, the cooling rate at a point 25 mm behind the heat source (where the temperature is 1364°C) was determined to be 382°C/s for the single source system, while that for a point 40 mm behind the major source (where the temperature is 1377°C) was determined to be 206°C/s for the dual heat source system. When the heat inputs for the dual system are reduced such that the total heat input is equal to that of the single source system, the resulting temperature rise is lower at all points of the weldment for the dual system. That also means a smaller weld pool size and heat affected zone. To maintain the same weld pool size and penetration as for the single heat source system then requires an increased total heat input for the dual heat source system, with the additional input depending on the spacing between the two heat sources.


2017 ◽  
Vol 115 ◽  
pp. 112-120 ◽  
Author(s):  
Ning Guo ◽  
Xiao Xing ◽  
Hongyun Zhao ◽  
Caiwang Tan ◽  
Jicai Feng ◽  
...  

2012 ◽  
Vol 20 (3) ◽  
pp. 534-540
Author(s):  
吴东江 WU Dong-jiang ◽  
王占宏 WANG Zhan-hong ◽  
马广义 MA Guang-yi ◽  
杨义彬 YANG Yi-bin ◽  
郭玉泉 GUO Yu-quan ◽  
...  

2012 ◽  
Vol 201-202 ◽  
pp. 388-391
Author(s):  
Zi Qin Chen ◽  
Xiang Dong Gao

In a high-power fiber laser welding process, the thermal radiation of a weld pool contains plenty of information for welding quality, in which the pool width can reflect the welding stability. Thus, extracting the welding pool width of high-power fiber laser welding based on infrared thermal imaging is an important method for monitoring the weld seam quality. In this paper, we studied the 304 stainless steel welded by a 10kW high-power fiber laser continuously. A near-infrared high-speed sensing camera was used to capture the weld pool images. Image algorithms such as median filtering, gray scale stretching, cutting, dynamic threshold mathematical morphology were applied to extract the weld pool image edge, analyze and detect the weld pool width. Welding experimental results showed that the proposed methods could extract the weld pool width, which could reflect the stability status of high-power fiber laser welding process accurately.


Sign in / Sign up

Export Citation Format

Share Document