scholarly journals Microbial Transformations of Organically Fermented Foods

Metabolites ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 165 ◽  
Author(s):  
Ruma Raghuvanshi ◽  
Allyssa G. Grayson ◽  
Isabella Schena ◽  
Onyebuchi Amanze ◽  
Kezia Suwintono ◽  
...  

Fermenting food is an ancient form of preservation ingrained many in human societies around the world. Westernized diets have moved away from such practices, but even in these cultures, fermented foods are seeing a resurgent interested due to their believed health benefits. Here, we analyze the microbiome and metabolome of organically fermented vegetables, using a salt brine, which is a common ‘at-home’ method of food fermentation. We found that the natural microbial fermentation had a strong effect on the food metabolites, where all four foods (beet, carrot, peppers and radishes) changed through time, with a peak in molecular diversity after 2–3 days and a decrease in diversity during the final stages of the 4-day process. The microbiome of all foods showed a stark transition from one that resembled a soil community to one dominated by Enterobacteriaceae, such as Erwinia spp., within a single day of fermentation and increasing amounts of Lactobacillales through the fermentation process. With particular attention to plant natural products, we observed significant transformations of polyphenols, triterpenoids and anthocyanins, but the degree of this metabolism depended on the food type. Beets, radishes and peppers saw an increase in the abundance of these compounds as the fermentation proceeded, but carrots saw a decrease through time. This study showed that organically fermenting vegetables markedly changed their chemistry and microbiology but resulted in high abundance of Enterobacteriaceae which are not normally considered as probiotics. The release of beneficial plant specialized metabolites was observed, but this depended on the fermented vegetable.

Fermentation ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 90 ◽  
Author(s):  
Nelson Mota de Carvalho ◽  
Eduardo M. Costa ◽  
Sara Silva ◽  
Lígia Pimentel ◽  
Tito H. Fernandes ◽  
...  

Dietary changes have accompanied the evolution of humanity and is proven to be fundamental in human evolution and well-being. Nutrition is essential for survival and as a matter of health and equilibrium of the human body. About 1/3 of the human diet is composed by fermented foods and beverages, which are widely distributed and consumed in different societies around the world, no matter the culture and lifestyle. Fermented foods are derived from the fermentation process of different substrates by microorganisms, and more importantly to humans, by those with beneficial characteristics, due to the positive impact on health. Food is transformed in the gut, gaining new proprieties, and increasing its value to the organism. The effects of fermented foods and beverages can be assessed by its influence at the gut microbiota level. Recent studies show the major importance of the gut microbiota role in modulating the organism homeostasis and homeorhesis. More crosslinks between health, gut microbiota and diet are being established especially in the gut–brain axis field. Therefore, the benefits of diet, in particularly of fermented foods and beverages, should be studied and pursued in order to promote a good health status.


2020 ◽  
pp. 1-11
Author(s):  
Xi-jun Wang ◽  
Shi Qiu ◽  
Aihua Zhang ◽  
Jian-hua Miao ◽  
Hui Sun ◽  
...  

The incidence of neurological disorders is growing in the world together with an increased lifespan. Nowadays, there are still no effective treatments for neurodegenerative pathology, which make necessary to search for new therapeutic agents. Natural products, most of them used in phytochemicals from herbal medicine, are considered promising alternatives for the treatment of neurodegenerative diseases. Numerous herbs have been applied to neurodegenerative disease treatments as complementary and alternative medicines. In the 21st century, omics-coupled functional pharmacology was developed for neurodegenerative drug discovery from natural products. In this article, we firstly provide the latest understanding of neurological disorders on risk factors, category, diagnosis and treatment, and then specially present an overview of natural products in neuroprotective effects research from chemical biology to pharmacological targets, and also discuss the natural products application and future challenge.


Author(s):  
Katherine Picott

Bacteria produce many natural products that have useful bioactivities such as antibiotic, anticancer and antifungal effects. In bacteria, these molecules are made in a step-by-step process using proteins called enzymes that assist in building the molecule at each step of the process. This research is focusing on the biosynthesis of two classes of natural products called prodiginines and tambjamines. The molecules in each class have different structures but follow similar construction steps. Both processes first form the same common intermediate, then in the final step this intermediate is combined with another unique intermediate to make the final product. In this study, the enzyme that is involved in the final step of the process will be characterized for both prodiginine and tambjamine-type molecules. By purifying the enzymes for both types of molecule properties such as their catalytic mechanism, substrate flexibility, and structure can be determined and compared.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Nasir Tajuddeen ◽  
Fanie R. Van Heerden

Abstract Background Malaria remains a significant public health challenge in regions of the world where it is endemic. An unprecedented decline in malaria incidences was recorded during the last decade due to the availability of effective control interventions, such as the deployment of artemisinin-based combination therapy and insecticide-treated nets. However, according to the World Health Organization, malaria is staging a comeback, in part due to the development of drug resistance. Therefore, there is an urgent need to discover new anti-malarial drugs. This article reviews the literature on natural products with antiplasmodial activity that was reported between 2010 and 2017. Methods Relevant literature was sourced by searching the major scientific databases, including Web of Science, ScienceDirect, Scopus, SciFinder, Pubmed, and Google Scholar, using appropriate keyword combinations. Results and Discussion A total of 1524 compounds from 397 relevant references, assayed against at least one strain of Plasmodium, were reported in the period under review. Out of these, 39% were described as new natural products, and 29% of the compounds had IC50 ≤ 3.0 µM against at least one strain of Plasmodium. Several of these compounds have the potential to be developed into viable anti-malarial drugs. Also, some of these compounds could play a role in malaria eradication by targeting gametocytes. However, the research into natural products with potential for blocking the transmission of malaria is still in its infancy stage and needs to be vigorously pursued.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
J. A. Shilpi ◽  
M. E. Islam ◽  
M. Billah ◽  
K. M. D. Islam ◽  
F. Sabrin ◽  
...  

Mangrove plants are specialised plants that grow in the tidal coasts of tropic and subtropic regions of the world. Their unique ecology and traditional medicinal uses of mangrove plants have attracted the attention of researchers over the years, and as a result, reports on biological activity of mangrove plants have increased significantly in recent years. This review has been set out to compile and appraise the results on antinociceptive, anti-inflammatory, and antipyretic activity of mangrove plants. While the Web of Knowledge, Google Scholar, and PubMed were the starting points to gather information, other pieces of relevant published literature were also adequately explored for this purpose. A total of 29 reports on 17 plant species have been found to report such activities. While 19 reports were on the biological activity of the crude extracts, 10 reports identified the active compound(s) of various chemical classes of natural products including terpenes, steroids, and flavonoids. This review finds that antinociceptive, anti-inflammatory, and antipyretic activity appears to be widespread in mangrove plants.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 389 ◽  
Author(s):  
Jeadran N. Malagón-Rojas ◽  
Anastasia Mantziari ◽  
Seppo Salminen ◽  
Hania Szajewska

Postbiotics have recently been tentatively defined as bioactive compounds produced during a fermentation process (including microbial cells, cell constituents and metabolites) that supports health and/or wellbeing. Postbiotics are currently available in some infant formulas and fermented foods. We systematically reviewed evidence on postbiotics for preventing and treating common infectious diseases among children younger than 5 years. The PubMed, Embase, SpringerLink, and ScienceDirect databases were searched up to March 2019 for randomized controlled trials (RCTs) comparing postbiotics with placebo or no intervention. Seven RCTs involving 1740 children met the inclusion criteria. For therapeutic trials, supplementation with heat-killed Lactobacillus acidophilus LB reduced the duration of diarrhea (4 RCTs, n = 224, mean difference, MD, −20.31 h, 95% CI −27.06 to −13.57). For preventive trials, the pooled results from two RCTs (n = 537) showed that heat-inactivated L. paracasei CBA L74 versus placebo reduced the risk of diarrhea (relative risk, RR, 0.51, 95% CI 0.37–0.71), pharyngitis (RR 0.31, 95% CI 0.12–0.83) and laryngitis (RR 0.44, 95% CI 0.29–0.67). There is limited evidence to recommend the use of specific postbiotics for treating pediatric diarrhea and preventing common infectious diseases among children. Further studies are necessary to determine the effects of different postbiotics.


Sign in / Sign up

Export Citation Format

Share Document