scholarly journals Marine Polysaccharide-Collagen Coatings on Ti6Al4V Alloy Formed by Self-Assembly

Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 68 ◽  
Author(s):  
Karl Norris ◽  
Oksana Mishukova ◽  
Agata Zykwinska ◽  
Sylvia Colliec-Jouault ◽  
Corinne Sinquin ◽  
...  

Polysaccharides of marine origin are gaining interest as biomaterial components. Bacteria derived from deep-sea hydrothermal vents can produce sulfated exopolysaccharides (EPS), which can influence cell behavior. The use of such polysaccharides as components of organic, collagen fibril-based coatings on biomaterial surfaces remains unexplored. In this study, collagen fibril coatings enriched with HE800 and GY785 EPS derivatives were deposited on titanium alloy (Ti6Al4V) scaffolds produced by rapid prototyping and subjected to physicochemical and cell biological characterization. Coatings were formed by a self-assembly process whereby polysaccharides were added to acidic collagen molecule solution, followed by neutralization to induced self-assembly of collagen fibrils. Fibril formation resulted in collagen hydrogel formation. Hydrogels formed directly on Ti6Al4V surfaces, and fibrils adsorbed onto the surface. Scanning electron microscopy (SEM) analysis of collagen fibril coatings revealed association of polysaccharides with fibrils. Cell biological characterization revealed good cell adhesion and growth on bare Ti6Al4V surfaces, as well as coatings of collagen fibrils only and collagen fibrils enhanced with HE800 and GY785 EPS derivatives. Hence, the use of both EPS derivatives as coating components is feasible. Further work should focus on cell differentiation.

2015 ◽  
Vol 12 (111) ◽  
pp. 20150701 ◽  
Author(s):  
O. G. Andriotis ◽  
S. W. Chang ◽  
M. Vanleene ◽  
P. H. Howarth ◽  
D. E. Davies ◽  
...  

The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry.


Author(s):  
Puttiporn Puttawibul ◽  
Soottawat Benjakul ◽  
Jirut Meesane

Freeze-thawed hybridized preparation and the biomimetic self-assembly technique were used to fabricate hydrogel as tissue engineered scaffolds for meniscus tissue. Because of the advantages of both techniques, they were hybridized together as an interesting preparation for hydrogel. Three molecular weights (high, medium, and low) of PVA were prepared in a biomimetic solution before formation into hydrogel by freeze-thawing. The most suitable molecular weight PVA for hydrogel formation was chosen to be mixed with collagen. PVA, PVA/collagen, and collagen were prepared in biomimetic solutions and freeze-thawed into hydrogels. The hydrogels were analyzed and characterized by FTIR, DSC, and SEM. FTIR characterization indicated that high molecular weight PVA formed molecular interaction better than the other molecular weights, and PVA molecules formed molecular interaction with collagen molecules via –OH and C=O groups. DSC characterization showed that the hybridized preparation of freeze-thawing and biomimetic self-assembly kept the characteristics of PVA and collagen. SEM analysis demonstrated that the morphological formation of PVA/collagen was hybridized during freeze-thawing and collagen self-assembly. The morphological structure was organized into a porous network structure. The porous structure showed a rough wall that was formed by the hybridized structure of the crystal domain dispersed in amorphous and collagen self-assembly.


The collagen fibril diameter distribution of four immature tissues from both rat and sheep have been determined from transverse sections observed in the transmission electron microscope. In many instances before birth, the form of the distribution for the tissues is both unimodal and sharp and the mean diameters of the distributions lie close to a multiple of 80 Å. For some tissues, the collagen fibril diameter distributions may be resolved into a number of components, each of which represents a population of fibrils with a diameter close to a multiple of 80 Å (8 nm). These data confirm and extend previous observations by the authors that small collagen fibrils all have diameters that are multiples of about 80 Å and that the fibril growth occurs by the accretion of 80 Å units. The form of the collagen fibril diameter distribution at birth is broad for the sheep tissues but narrow for the rat tissues, thus confirming that the range of fibril diameters at this stage of life reflects the differing degree of development of precocious and altricious animals.


1979 ◽  
Vol 181 (3) ◽  
pp. 639-645 ◽  
Author(s):  
C A Vater ◽  
E D Harris ◽  
R C Siegel

A model system consisting of highly purified lysyl oxidase and reconstituted lathyritic chick bone collagen fibrils was used to study the effect of collagen cross-linking on collagen degradation by mammalian collagenase. The results indicate that synthesis of approx. 0.1 Schiff-base cross-link per collagen molecule results in a 2–3-fold resistance to human synovial collagenase when compared with un-cross-linked controls or samples incubated in the presence of beta-aminopropionitrile to inhibit cross-linking. These results confirm previous studies utilizing artificially cross-linked collagens, or collagens isolated as insoluble material after cross-linking in vivo, and suggest that increased resistance to collagenase may be one of the earliest effects of cross-linking in vivo. The extent of intermolecular cross-linking among collagen fibrils may provide a mechanism for regulating the rate of collagen catabolism relative to synthesis in normal and pathological conditions.


2005 ◽  
Vol 38 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Simone Vesentini ◽  
Alberto Redaelli ◽  
Franco M. Montevecchi

2021 ◽  
Author(s):  
Joan Chang ◽  
Adam Pickard ◽  
Richa Garva ◽  
Yinhui Lu ◽  
Donald Gullberg ◽  
...  

abstractCollagen fibrils are the principal supporting elements in vertebrate tissues. They account for 25% of total protein mass, exhibit a broad range of size and organisation depending on tissue and stage of development, and can be under circadian clock control. Here we show that the remarkable dynamic pleomorphism of collagen fibrils is underpinned by a mechanism that distinguishes between collagen secretion and initiation of fibril assembly, at the plasma membrane. Collagen fibrillogenesis occurring at the plasma membrane requires vacuolar protein sorting (VPS) 33b (which is under circadian clock control), collagen-binding integrin-α11 subunit, and is reduced when endocytosis is inhibited. Fibroblasts lacking VPS33b secrete soluble collagen without assembling fibrils, whereas constitutive over-expression of VPS33b increases fibril number with loss of fibril rhythmicity. In conclusion, our study has identified the mechanism that switches secretion of collagen (without forming new fibrils) to new collagen fibril assembly, at the plasma membrane.


1987 ◽  
Vol 72 (3) ◽  
pp. 359-363 ◽  
Author(s):  
Pr J. E. Scott ◽  
Marion Haigh ◽  
Geok-Eng Neo ◽  
Sarah Gibson

1. Voluntary muscle activity in chick embryos was paralysed by administration in ovo of tubocurarine hydrochloride, administered in single or multiple doses, from day 9 to day 13 after fertilization. Control eggs were given saline instead of tubocurarine or were simply incubated without operative interference. Embryos were killed at 9, 13, 14, 16 and 19 days after fertilization. Flexor digitorum tendons were removed, fixed in glutaraldehyde, embedded in plastic, sectioned, and stained with phosphotungstic acid for electron microscopy. The diameters of the tendon collagen fibrils were measured, on electron micrographs, using a Magiscan Mk II programme. 2. Tendon collagen fibril expansion was not inhibited by tubocurarine treatment. It is concluded that the rapid increase of collagen fibril diameters, which coincides in the normal embryo with the first onset of use of the associated muscle, is not dependent on muscle activity. There remains a possibility that other ways of producing tension in the tendon could provide sufficient stimulus to fibril expansion.


1984 ◽  
Vol 99 (6) ◽  
pp. 2024-2033 ◽  
Author(s):  
D E Birk ◽  
R L Trelstad

The regulation of collagen fibril, bundle, and lamella formation by the corneal fibroblasts, as well as the organization of these elements into an orthogonal stroma, was studied by transmission electron microscopy and high voltage electron microscopy. Transmission and high voltage electron microscopy of chick embryo corneas each demonstrated a series of unique extracellular compartments. Collagen fibrillogenesis occurred within small surface recesses. These small recesses usually contained between 5 and 12 collagen fibrils with typically mature diameters and constant intrafibrillar spacing. The lateral fusion of the recesses resulted in larger recesses and consequent formation of prominent cell surface foldings. Within these surface foldings, bundles that contained 50-100 collagen fibrils were formed. The surface foldings continued to fuse and the cell surface retracted, forming large surface-associated compartments in which bundles coalesced to form lamellae. High voltage electron microscopy of 0.5 micron sections cut parallel to the corneal surface revealed that the corneal fibroblasts and their processes had two major axes at approximately right angles to one another. The surface compartments involved in the production of the corneal stroma were aligned along the fibroblast axes and the orthogonality of the cell was in register with that of the extracellular matrix. In this manner, corneal fibroblasts formed collagen fibrils, bundles, and lamellae within a controlled environment and thereby determined the architecture of the corneal stroma by the configuration of the cell and its associated compartments.


Sign in / Sign up

Export Citation Format

Share Document