scholarly journals Study on the Cutting Performance of Micro Textured Tools on Cutting Ti-6Al-4V Titanium Alloy

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 137 ◽  
Author(s):  
Kairui Zheng ◽  
Fazhan Yang ◽  
Na Zhang ◽  
Qingyu Liu ◽  
Fulin Jiang

Titanium alloys are widely used in various fields, but their machinability is poor because the chip would easily adhere to the tool surface during cutting, causing poor surface quality and tool wear. To improve the cutting performance of titanium alloy Ti-6Al-4V, experiments were conducted to investigate the effect of micro textured tool on the cutting performances. The cemented carbide tools whose rake faces were machined with line, rhombic, and sinusoidal groove textures with 10% area occupancy rates were adopted as the cutting tools. The effects of cutting depth and cutting speed on feed force and main cutting force were discussed based on experimental results. The results show that the cutting force produced by textured tools is less than that produced by non-textured tools. Under different cutting parameters, the best cutting performance can be obtained by using sinusoidal textured tools among the four types of tools. The wear of micro textured tools is significantly lower than that of non-textured tools, due to a continuous lubrication film between the chip and the rake face of the tool that can be produced because the micro texture can store and replenish lubricant. The surface roughness obtained using the textured tool is better than that using the non-textured tool. The surface roughness Ra can be reduced by 35.89% when using sinusoidal textured tools. This study is helpful for further improving the cutting performance of cemented carbide tools on titanium alloy and prolonging tool life.

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 850 ◽  
Author(s):  
Zhaojun Ren ◽  
Shengguan Qu ◽  
Yalong Zhang ◽  
Xiaoqiang Li ◽  
Chao Yang

In this paper, TiAlN-coated cemented carbide tools with chip groove were used to machine titanium alloy Ti-6Al-0.6Cr-0.4Fe-0.4Si-0.01B under dry conditions in order to investigate the machining performance of this cutting tool. Wear mechanisms of TiAlN-coated cemented carbide tools with chip groove were studied and compared to the uncoated cemented carbide tools (K20) with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The effects of the cutting parameters (cutting speed, feed rate and depth of cut) on tool life and workpiece surface roughness of TiAlN-coated cemented carbide tools with chip groove were studied with a 3D super-depth-of-field instrument and a surface profile instrument, respectively. The results showed that the TiAlN-coated cemented carbide tools with chip groove were more suitable for machining TC7. The adhesive wear, diffusion wear, crater wear, and stripping occurred during machining, and the large built-up edge formed on the rake face. The optimal cutting parameters of TiAlN-coated cemented carbide tools were acquired. The surface roughness Ra decreased with the increase of the cutting speed, while it increased with the increase of the feed rate.


Author(s):  
Minghua Pang ◽  
Xiaojun Liu ◽  
Kun Liu

Purpose This study aimed to clarify the influence mechanism of conical micro-grooved texture on the tool–chip friction property and cutting performance of WC-TiC/Co cemented carbide tools under flood lubrication conditions. Design/methodology/approach Conical micro-grooved texture was fabricated on the tool rake face using laser texture technology. Metal cutting tests were conducted on AISI 1045 steel with conventional and developed tools for various cutting speeds (80 m/min to 160 m/min) and conical angles of micro-grooved texture (2 ° to 5 °) under flood lubrication condition. The effect of conical micro-grooved texture on the tool cutting force, tool–chip friction coefficient, surface roughness of the machined workpiece, and wear of the tool rake face was determined. Findings Unlike the conventional tools, the conical micro-grooved tools successfully resulted in reductions in metal cutting force, tool–chip frictional coefficient, surface roughness of the machined workpiece, and wear of the tool rake face. These reductions were more noticeable than those of conventional tools with increases in the cutting speed and conical angle of the micro-grooved texture. Detailed research indicated that conical micro-grooved channel exhibits a directional motion characteristic of liquid, which accelerated the infiltration of cutting fluid at the tool–chip interface. Substantial cutting fluid was supplied and stored at the tool–chip interface for the conical micro-grooved tools. Therefore, the conical micro-grooved texture on the tool rake face showed evident advantages in improving tool–chip friction and tool cutting performance. Originality/value The main contribution of this study is proposing a new conical micro-grooved texture on the tool rake face, which improved tool–chip friction and tool cutting performance.


2012 ◽  
Vol 472-475 ◽  
pp. 1818-1822
Author(s):  
Wei Hua Wu ◽  
Yan Yan Guo ◽  
Can Zhao ◽  
Tao Xu ◽  
Jia Yang

To improve the production efficiency and product quality of titanium alloy TC4, with the minimum of cutting force F, surface roughness Ra, and surface peak valley height Pv as the optimized goal, using orthogonal rotating combination design method of three factors quadratic regression, the influence of cutting speed vc, feed per tooth fz and cutting width ae to cutting force (Fx, Fy) surface peak valley height Pv and surface roughness Ra are mainly studied, and the best cutting amount combination is chosen. Experiment results indicate that the best cutting parameters of titanium alloy are vc=28.588 m/min、fz=0.043 3 mm/z、ae=0.1 mm, the optimal values are =3.346 N、 =47.01 N、 =673.89 nm and =201.78 nm. This research is of theoretical significance for improving the processing efficiency and machining quality and reducing the production cost.


2013 ◽  
Vol 641-642 ◽  
pp. 367-370
Author(s):  
Gui Qiang Liang ◽  
Fei Fei Zhao

Abstract In the present study, an attempt has been made to investigate the effect of cutting parameters (cutting speed, feed rate and depth of cut) on cutting forces (feed force, thrust force and cutting force) and surface roughness in milling of Quartz glas using diamond wheel. The cutting process in the up-cut milling of glass is discussed and the cutting force measured. The cutting force gradually increases with the cutter rotation at the beginning of the cut, and oscillates about a constant mean value after a certain undeformed chip thickness. The results show that cutting forces and surface roughness do not vary much with experimental cutting speed in the range of 55–93 m/min. The suggested models of cutting forces and surface roughness and adequately map within the limits of the cutting parameters considered.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2174 ◽  
Author(s):  
Zhaolong Zhu ◽  
Pingxiang Cao ◽  
Xiaolei Guo ◽  
Xiaodong (Alice) Wang ◽  
Fan Zhang ◽  
...  

In order to better provide a theoretical basis for the machining of luxury vinyl tiles, a helical milling experiment was conducted by using diamond cutting tools, and special attention was given to the trends of cutting force and surface roughness in respect to tool geometry and cutting parameters. The results showed that the resultant force was negatively correlated to the helix angle and cutting speed, but positively correlated with the cutting depth. Then, that the surface roughness increased with a decrease of the helix angle and an increase of cutting depth, while as cutting speed raised, the surface roughness first declined and then increased. Thirdly, the cutting depth was shown to have the greatest influence on both cutting force and surface roughness, followed by helix angle and cutting speed. Fourth, the contribution of cutting depth only was significant to cutting force, while both the helix angle and cutting speed had insignificant influence on the cutting force and surface roughness. Finally, the optimal cutting conditions were proposed for industrial production, in which the helix angle, cutting speed and cutting depth were 70°, 2200 m/min and 0.5 mm, respectively.


2011 ◽  
Vol 413 ◽  
pp. 347-350
Author(s):  
Gui Quan Han ◽  
Zeng Zhi Zhang

The cutting temperature rules of cemented carbide tools YW2 during cutting austenitic manganese steel ZGMn13 were investigated by experiments through systematically changing cutting parameters (cutting speed, feed, cutting depth) under the condition of dry cutting. The experiential expressions for cutting temperature of tools were summarized while dominating factors for influencing cutting temperature were analyzed. The results show that accounting values by experiential formulae basically match actually measuring values by experiments which may play an important role in studying cutting law of austenitic manganese steel. Cutting speed plays a major role in determining the temperature of cutting tools, followed by feed rate and depth of cutting.


2011 ◽  
Vol 2 (2) ◽  
pp. 79-87 ◽  
Author(s):  
I. Hanafi ◽  
A. Khamlichi ◽  
F. Mata Cabrera ◽  
E. Almansa ◽  
A. Jabbouri

Abstract Non-reinforced and reinforced Poly-Ether-Ether-Ketone (PEEK) plastics have excellent mechanical and thermal properties. Machining is an efficient process that can be used to manufacture specific mechanical parts made from PEEK composites. Researchers have focused on improving the performance of machining operations with the aim of minimizing costs and improving quality of manufactured products, in order to get the best surface roughness and the minimum cutting force. The parameters evaluated are the cutting speed, the depth of cut and the feed rate. In this paper, the effect of the mentioned parameters on surface roughness and cutting force, in dry turning of reinforced PEEK with 30% of carbon fibers (PEEK CF30) using TiN coated cutting tools, is analyzed through using robust design techniques such as Taguchi's design method, signal-to-noise (S/N) ratio and statistical analysis tools such as Pareto-ANOVA. The obtained results have shown that Taguchi method and Pareto ANOVA are suitable for optimizing the cutting parameters with the minimum possible number of experiments, and the optimized process parameters were determined for surface roughness and cutting force criteria.


2011 ◽  
Vol 55-57 ◽  
pp. 327-331 ◽  
Author(s):  
Cheng Mao Zhang ◽  
Cheng Li ◽  
De Yuan Zhang

Hardened stainless steels are materials widely used in the field of aviation and spaceflight. Machining of this materials with conventional cutting (CC) method is a real challenge compared to other difficult-to-cut materials. Ultrasonic elliptical vibration cutting (UEVC) method is a novel and non-conventional cutting technique which has been successfully applied to machine such intractable materials for the last decade. However, few studies have been conducted on the cutting force in ultrasonic elliptical vibration cutting of hardened materials. This paper presents an experimental study on cutting force in UEVC of hardened stainless steels using cemented carbide tools. Experiments have been carried out to investigate the effect of cutting parameters in the UEVC method in terms of cutting force, while cutting hardened stainless steels. The tests have revealed that the average thrust force,principal force and feed force drop to 3%,10% and 90% of CC value for UEVC of hardened stainless steels. The ratio between the CC force and the UEVC force decrease with the increase of DOC and cutting speed.


2014 ◽  
Vol 800-801 ◽  
pp. 237-240
Author(s):  
Li Fu Xu ◽  
Ze Liang Wang ◽  
Shu Tao Huang ◽  
Bao Lin Dai

In this paper, the cutting experiment was used to study the influence of various cutting parameters on cutting force when rough turning titanium alloy (TC4) with the whole CBN tool. The results indicate that among the cutting speed, feed rate and cutting depth, the influence of the cutting depth is the most significant on cutting force; the next is the feed rate and the cutting speed is at least.


2020 ◽  
Vol 36 ◽  
pp. 28-46
Author(s):  
Youssef Touggui ◽  
Salim Belhadi ◽  
Salah Eddine Mechraoui ◽  
Mohamed Athmane Yallese ◽  
Mustapha Temmar

Stainless steels have gained much attention to be an alternative solution for many manufacturing industries due to their high mechanical properties and corrosion resistance. However, owing to their high ductility, their low thermal conductivity and high tendency to work hardening, these materials are classed as materials difficult to machine. Therefore, the main aim of the study was to examine the effect of cutting parameters such as cutting speed, feed rate and depth of cut on the response parameters including surface roughness (Ra), tangential cutting force (Fz) and cutting power (Pc) during dry turning of AISI 316L using TiCN-TiN PVD cermet tool. As a methodology, the Taguchi L27 orthogonal array parameter design and response surface methodology (RSM)) have been used. Statistical analysis revealed feed rate affected for surface roughness (79.61%) and depth of cut impacted for tangential cutting force and cutting power (62.12% and 35.68%), respectively. According to optimization analysis based on desirability function (DF), cutting speed of 212.837 m/min, 0.08 mm/rev feed rate and 0.1 mm depth of cut were determined to acquire high machined part quality


Sign in / Sign up

Export Citation Format

Share Document