scholarly journals Lab-on-Chip Platform for Culturing and Dynamic Evaluation of Cells Development

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 196
Author(s):  
Agnieszka Podwin ◽  
Danylo Lizanets ◽  
Dawid Przystupski ◽  
Wojciech Kubicki ◽  
Patrycja Śniadek ◽  
...  

This paper presents a full-featured microfluidic platform ensuring long-term culturing and behavioral analysis of the radically different biological micro-objects. The platform uses all-glass lab-chips and MEMS-based components providing dedicated micro-aquatic habitats for the cells, as well as their intentional disturbances on-chip. Specially developed software was implemented to characterize the micro-objects metrologically in terms of population growth and cells’ size, shape, or migration activity. To date, the platform has been successfully applied for the culturing of freshwater microorganisms, fungi, cancer cells, and animal oocytes, showing their notable population growth, high mobility, and taxis mechanisms. For instance, circa 100% expansion of porcine oocytes cells, as well as nearly five-fold increase in E. gracilis population, has been achieved. These results are a good base to conduct further research on the platform versatile applications.

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1531 ◽  
Author(s):  
Maria Colomba Comes ◽  
Arianna Mencattini ◽  
Davide Di Giuseppe ◽  
Joanna Filippi ◽  
Michele D’Orazio ◽  
...  

Cell motility is the brilliant result of cell status and its interaction with close environments. Its detection is now possible, thanks to the synergy of high-resolution camera sensors, time-lapse microscopy devices, and dedicated software tools for video and data analysis. In this scenario, we formulated a novel paradigm in which we considered the individual cells as a sort of sensitive element of a sensor, which exploits the camera as a transducer returning the movement of the cell as an output signal. In this way, cell movement allows us to retrieve information about the chemical composition of the close environment. To optimally exploit this information, in this work, we introduce a new setting, in which a cell trajectory is divided into sub-tracks, each one characterized by a specific motion kind. Hence, we considered all the sub-tracks of the single-cell trajectory as the signals of a virtual array of cell motility-based sensors. The kinematics of each sub-track is quantified and used for a classification task. To investigate the potential of the proposed approach, we have compared the achieved performances with those obtained by using a single-trajectory paradigm with the scope to evaluate the chemotherapy treatment effects on prostate cancer cells. Novel pattern recognition algorithms have been applied to the descriptors extracted at a sub-track level by implementing features, as well as samples selection (a good teacher learning approach) for model construction. The experimental results have put in evidence that the performances are higher when a further cluster majority role has been considered, by emulating a sort of sensor fusion procedure. All of these results highlighted the high strength of the proposed approach, and straightforwardly prefigure its use in lab-on-chip or organ-on-chip applications, where the cell motility analysis can be massively applied using time-lapse microscopy images.


Author(s):  
Arash Yahyazadeh Shourabi ◽  
Roozbeh Salajeghe ◽  
Maryam Barisam ◽  
Navid Kashaninejad

Microfluidic lab-on-chip devices are widely being developed for chemical and biological studies. One of the most commonly used types of these chips is perfusion microwells for culturing multicellular spheroids. The main challenge in such systems is the formation of substantial necrotic and hypoxic zones within the cultured spheroids. Herein, we propose a novel acoustofluidic integrated platform to tackle this bottleneck problem. We show that such an approach enhances cell viability and shrinks necrotic and hypoxic zones in these spheroid-on-a-chip platforms without the need to increase the flow rate, leading to a significant reduction in costly reagents' consumption. Proof-of-concept, designing procedures, and finite element numerical simulation are discussed in details. Also, the effects of acoustic and hydrodynamic parameters on the cultured cells are investigated. The results show that by increasing acoustic boundary displacement amplitude (d0), the spheroid’s proliferating zone enlarges greatly. Moreover, it is shown that by implementing d0=0.5 nm, the required flow rate to maintain the necrotic zone below 13% will be decreased 12 times compared to non-acoustic chips.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2804 ◽  
Author(s):  
Olga Troitskaya ◽  
Mikhail Varlamov ◽  
Anna Nushtaeva ◽  
Vladimir Richter ◽  
Olga Koval

Natural compounds of various origins are intensively investigated for their antitumor activity. Potential benefits of antitumor therapy can be achieved when cytotoxic agents kill cancer cells and these dying cancer cells drive adoptive immunity to the tumor. This strategy was successfully demonstrated for chemotherapeutic drugs that induce immunogenic type of cell death (ICD) with release of DAMPs (danger associated molecular patterns) and exposure of “eat me” signals. In this study, we demonstrated that recombinant human milk peptide lactaptin (RL2) induces death of cancer cells with ICD hallmarks in vitro with the release of ATP and high-mobility group box 1 protein (HMGB1) and exposure of calreticulin and HSP70 on the external cell membrane. RL2-treated cancer cells were efficiently engulfed by phagocytic cells. Using the syngeneic mouse model, we demonstrated that RL2-treated MX-7 rhabdomyosarcoma cells confer long-term immune-mediated protection against challenge with live MX-7 cells. We also analyzed the combinatorial antitumor effect of vaccination with RL2-treated cells and the inhibition of indoleamine 2,3-dioxygenase (IDO) with ethyl pyruvate. Compared to solo anti-tumor immunization with RL2-treated cells, additional chemical inhibition of IDO demonstrated better long-term antitumor responses than vaccination alone.


2021 ◽  
pp. 2004101
Author(s):  
Marco Giacometti ◽  
Francesca Milesi ◽  
Pietro Lorenzo Coppadoro ◽  
Alberto Rizzo ◽  
Federico Fagiani ◽  
...  
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1113
Author(s):  
Mohammed Asadullah Khan ◽  
Jürgen Kosel

An integrated polymer-based magnetohydrodynamic (MHD) pump that can actuate saline fluids in closed-channel devices is presented. MHD pumps are attractive for lab-on-chip applications, due to their ability to provide high propulsive force without any moving parts. Unlike other MHD devices, a high level of integration is demonstrated by incorporating both laser-induced graphene (LIG) electrodes as well as a NdFeB magnetic-flux source in the NdFeB-polydimethylsiloxane permanent magnetic composite substrate. The effects of transferring the LIG film from polyimide to the magnetic composite substrate were studied. Operation of the integrated magneto hydrodynamic pump without disruptive bubbles was achieved. In the studied case, the pump produces a flow rate of 28.1 µL/min. while consuming ~1 mW power.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


Sign in / Sign up

Export Citation Format

Share Document