scholarly journals 2019 Novel Coronavirus Disease (COVID-19): Paving the Road for Rapid Detection and Point-of-Care Diagnostics

Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 306 ◽  
Author(s):  
Trieu Nguyen ◽  
Dang Duong Bang ◽  
Anders Wolff

We believe a point-of-care (PoC) device for the rapid detection of the 2019 novel Coronavirus (SARS-CoV-2) is crucial and urgently needed. With this perspective, we give suggestions regarding a potential candidate for the rapid detection of the coronavirus disease 2019 (COVID-19), as well as factors for the preparedness and response to the outbreak of the COVID-19.

Diagnostics ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 449
Author(s):  
Tivani P. Mashamba-Thompson ◽  
Paul K. Drain

Point-of-care (POC) diagnostic services are commonly associated with pathology laboratory services. This issue presents a holistic approach to POC diagnostics services from a variety of disciplines including pathology, radiological and information technology as well as mobile technology and artificial intelligence. This highlights the need for transdisciplinary collaboration to ensure the efficient development and implementation of point-of-care diagnostics. The advent of the novel coronavirus 2019 (COVID-19) pandemic has prompted rapid advances in the development of new POC diagnostics. Global private and public sector agencies have significantly increased their investment in the development of POC diagnostics. There is no longer a question about the availability and accessibility of POC diagnostics. The question is “how can POC diagnostic services be integrated into health services in way that is useful and acceptable in the COVID-19 era?”.


2020 ◽  
Author(s):  
Alexander N. Baker ◽  
Sarah-Jane Richards ◽  
Collette S. Guy ◽  
Thomas R. Congdon ◽  
Muhammad Hasan ◽  
...  

<div> <div> <div> <p>There is an urgent need to understand the behavior of novel coronavirus (SARS-COV-2), which is the causative agent of COVID-19, and to develop point-of-care diagnostics. Here, a glyconanoparticle platform is used to discover that N-acetyl neuraminic acid has high affinity towards the SARS-COV-2 spike glycoprotein, demonstrating its glycan-binding function. Optimization of the particle size and coating enabled detection of the spike glycoprotein in lateral flow and showed selectivity over the SARS-COV-1 spike protein. Using a viral particle mimic, paper-based lateral flow detection was demonstrated in under 30 minutes showing the potential of this system as a low-cost detection platform. </p> </div> </div> </div>


2021 ◽  
Vol 2 ◽  
Author(s):  
Vamkudoth Koteswara Rao

Coronaviruses are recognized as causative agents of human diseases worldwide. In Wuhan, China, an outbreak of Severe acute respiratory syndrome novel Coronavirus (SARS-nCoV-2) was reported at the end of December 2019, causing 63 million COVID cases and 1.3 million deaths globally by 2 December, 2020. The transmission risk forecasts and the SARS-nCoV-2 epidemic pattern are progressive. Unfortunately, there is no specific FDA approved drugs or vaccines available currently to treat SARS-nCoV-2. In response to nCoV-2 spread, the rapid detection is crucial for estimating the severity of the disease and treatment of patients. Currently, there are several RT-PCR based diagnostic kits available for SARS-nCoV-2 detection, which are time-consuming, expensive, need advanced equipment facilities and trained personnel. The cost of diagnosis and the unavailability of sufficient test kits may prevent to check community transmission. Furthermore, expanding the testing facilities in asymptomatic cases in hotspots require more Point of Care (PoC) devices. Therefore, fast, inexpensive, and reliable methods of detection of SARS-nCoV-2 virus infection in humans is urgently required. The rapid and easy-to-use devices will facilitate onsite testing. In this review, nucleic acid assays, serological assays, multiplex assays, and PoC devices are discussed to understand various diagnostic approaches to reduce the spread and mortality rate in the future. Aptamer based detection is most specific, inexpensive and rapid detection of SARS-nCoV-2 without laboratory tools. To the best of our knowledge more than 900 SARS-nCoV-2 test kits are in pipeline, among 395 test kits are molecular bested test kits and only few test kits are developed using Aptamer technology https://www.finddx.org/covid-19/pipeline/.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5871 ◽  
Author(s):  
Bhaskar S. Vadlamani ◽  
Timsy Uppal ◽  
Subhash C. Verma ◽  
Mano Misra

The COronaVIrus Disease (COVID-19) is a newly emerging viral disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Rapid increase in the number of COVID-19 cases worldwide led the WHO to declare a pandemic within a few months after the first case of infection. Due to the lack of a prophylactic measure to control the virus infection and spread, early diagnosis and quarantining of infected as well as the asymptomatic individuals are necessary for the containment of this pandemic. However, the current methods for SARS-CoV-2 diagnosis are expensive and time consuming, although some promising and inexpensive technologies are becoming available for emergency use. In this work, we report the synthesis of a cheap, yet highly sensitive, cobalt-functionalized TiO2 nanotubes (Co-TNTs)-based electrochemical sensor for rapid detection of SARS-CoV-2 through sensing the spike (receptor binding domain (RBD)) present on the surface of the virus. A simple, low-cost, and one-step electrochemical anodization route was used for synthesizing TNTs, followed by an incipient wetting method for cobalt functionalization of the TNTs platform, which was connected to a potentiostat for data collection. This sensor specifically detected the S-RBD protein of SARS-CoV-2 even at very low concentration (range of 14 to 1400 nM (nano molar)). Additionally, our sensor showed a linear response in the detection of viral protein over the concentration range. Thus, our Co-TNT sensor is highly effective in detecting SARS-CoV-2 S-RBD protein in approximately 30 s, which can be explored for developing a point of care diagnostics for rapid detection of SARS-CoV-2 in nasal secretions and saliva samples.


2022 ◽  
Author(s):  
Samir Malhotra ◽  
Dang Song Pham ◽  
Michael P.H. Lau ◽  
Anh H. Nguyen ◽  
Hung Cao

Detection of bacterial pathogens is significant in the fields of food safety, medicine, public health, etc. If bacterial pathogens are not treated promptly, antimicrobial resistance is possible and can lead to morbidity and mortality. Current bacterial detection methodologies rely on laboratory-based techniques that pose limitations such as long turnaround detection times, expensive costs, in-adequate accuracy, and required trained specialists. Here, we describe a cost-effective and port-able 3D-printed electrochemical biosensor that facilitates rapid detection of certain Escherichia coli (E. coli) strains (DH5α, BL21, TOP10, and JM109) within 15 minutes using 500 μL of sample and costs $2.50 per test. The sensor displayed an excellent limit of detection (LOD) of 53 CFU, limit of quantification (LOQ) of 270 CFU, and showed cross-reactivity with strains BL21 and JM109 due to shared epitopes. This advantageous diagnostic device is a potential candidate for high-frequency testing at the point of care as well as applicable to various fields where pathogen detection is of interest.


2020 ◽  
Vol 11 (1) ◽  
pp. 8233-8241 ◽  

Coronavirus disease (COVID-19) is a respiratory infectious disease caused by a newly discovered virus strain, severe acute respiratory syndrome coronavirus-2 (SARS-Cov-2). This pandemic spread quickly across nations with a high mortality rate in immunocompromised patients. This contagious disease posed a serious threat to health systems. It impacted the continents of the earth in a way that could not have been predicted. Therefore, many leading funding agencies announced the call for proposal to diagnosis and treatment of COVID-19 pandemic using advanced technology-based methods, including nanotechnology. The researchers coming from the nanotechnology community can contribute their efforts to cope with COVID-19. As a community member of nanotechnology, we suggest some new research targets that can be designed and improved, optimized, and developed the existing/new materials in the sub-field of diagnostics and healthcare of nanotechnology. The potential research targets to fight against COVID-19 includes Point-of-care diagnostics (POCD), surveillance and monitoring, novel therapeutics, vaccine development, research, and development, repurposing existing drugs with potential therapeutic applications, development of antiviral nanocoating/antimicrobial spray-based coating for PPE, magnetic nanoparticles and viral RNA and rapid detection kits.


QJM ◽  
2020 ◽  
Vol 113 (12) ◽  
pp. 851-853
Author(s):  
J H McDermott ◽  
D Stoddard ◽  
J M Ellingford ◽  
D Gokhale ◽  
C Reynard ◽  
...  

Author(s):  
Alexander N. Baker ◽  
Sarah-Jane Richards ◽  
Collette S. Guy ◽  
Thomas R. Congdon ◽  
Muhammad Hasan ◽  
...  

<div> <div> <div> <p>There is an urgent need to understand the behavior of novel coronavirus (SARS-COV-2), which is the causative agent of COVID-19, and to develop point-of-care diagnostics. Here, a glyconanoparticle platform is used to discover that N-acetyl neuraminic acid has high affinity towards the SARS-COV-2 spike glycoprotein, demonstrating its glycan-binding function. Optimization of the particle size and coating enabled detection of the spike glycoprotein in lateral flow and showed selectivity over the SARS-COV-1 spike protein. Using a viral particle mimic, paper-based lateral flow detection was demonstrated in under 30 minutes showing the potential of this system as a low-cost detection platform. </p> </div> </div> </div>


AIP Advances ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 125325
Author(s):  
Loi Tonthat ◽  
Shunnosuke Takahashi ◽  
Hidehiko Onodera ◽  
Kazuhiko Okita ◽  
Shin Yabukami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document