scholarly journals Characterization and Optimization of Isotachophoresis Parameters for Pacific Blue Succinimidyl Ester Dye on a PDMS Microfluidic Chip

Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 951 ◽  
Author(s):  
Himali Somaweera ◽  
Zachary Estlack ◽  
Jasmine Pramila Devadhasan ◽  
Jungtae Kim ◽  
Jungkyu Kim

Isotachophoresis (ITP) for Pacific Blue (PB) dye using a polydimethylsiloxane (PDMS) microfluidic chip is developed and characterized by determining the types and concentrations of electrolytes, the ITP duration, and the electric field density. Among candidate buffers for the trailing electrolyte (TE) and leading electrolyte (LE), 40 mM borate buffer (pH 9) and 200 mM trisaminomethane hydrochloride (Tris-HCl) (pH 8) were selected to obtain the maximum preconcentration and resolution of the PB bands, respectively. With the selected TE and LE buffers, further optimization was performed to determine the electric field (EF) density and the ITP duration. These ITP parameters showed a 20–170,000 preconcentration ratio from initial PB concentrations of 10 nM–100 fM. Further demonstration was implemented to preconcentrate PB-conjugated lactate dehydrogenase (LDH) using the PDMS microfluidic chip. By utilizing the quenching nature of PB-LDH conjugation, we were able to identify concentrations of LDH as low as 10 ng/mL. This simple PDMS microfluidic chip-based ITP for PB preconcentration enables highly sensitive biological and chemical analyses by coupling with various downstream detection systems.

2021 ◽  
Vol 33 (12) ◽  
pp. 2008486
Author(s):  
Yongyuan Ren ◽  
Ziyang Liu ◽  
Guoqing Jin ◽  
Mengke Yang ◽  
Yizhe Shao ◽  
...  

The Analyst ◽  
2020 ◽  
Vol 145 (6) ◽  
pp. 2412-2419 ◽  
Author(s):  
Rachel N. Deraney ◽  
Lindsay Schneider ◽  
Anubhav Tripathi

NA extraction and purification utilitzing a microfluidic chip with applied electric field to induce electroosmotic flow opposite the magnetic NA-bound bead mix.


2021 ◽  
Author(s):  
Jaydev Upponi ◽  
Tiziana Musacchio ◽  
Salome Siavoshi ◽  
Asanterabi Malima ◽  
Cihan Yilmaz ◽  
...  

Abstract Biomarkers are emerging as potentially important diagnostic tools for cancer and many other diseases. However, many current detection systems for suffer from insufficient sensitivity. To address this concern, we developed a highly sensitive biosensor, featuring monoclonal antibody-coated polystyrene nanobeads assembled in the trenches of a microchip, for the detection of cancer biomarkers. These biosensors detected nucleosomes and carcinoembryonic antigen in serum at concentrations of 62.5 and 15.6 pg/mL, respectively. Very low detection limits that suggest such devices might be beneficial for the early detection of tumors and for monitoring of patients in remission.


2019 ◽  
Vol 297 ◽  
pp. 111558 ◽  
Author(s):  
Zhao Yang ◽  
Li Xia ◽  
Shiyu Li ◽  
Ruiling Qi ◽  
Xin Chen ◽  
...  

2013 ◽  
Vol 15 (10) ◽  
pp. 105003 ◽  
Author(s):  
Junqiao Wang ◽  
Xiaomin Liu ◽  
Lei Li ◽  
Jinna He ◽  
Chunzhen Fan ◽  
...  

Author(s):  
Christian Davidson ◽  
Junjie Zhu ◽  
Xiangchun Xuan

We successfully demonstrate that DC dielectrophoresis can be utilized to separate particles of three dissimilar sizes simultaneously in a microfluidic chip. This continuous-flow separation is attributed to the particle size dependent dielectrophoretic force that is generated by the non-uniform electric field around a single insulating hurdle on the channel sidewall.


1991 ◽  
Vol 37 (9) ◽  
pp. 1534-1539 ◽  
Author(s):  
G F Blackburn ◽  
H P Shah ◽  
J H Kenten ◽  
J Leland ◽  
R A Kamin ◽  
...  

Abstract Electrochemiluminescence (ECL) has been developed as a highly sensitive process in which reactive species are generated from stable precursors (i.e., the ECL-active label) at the surface of an electrode. This new technology has many distinct advantages over other detection systems: no radioisotopes are used; detection limits for label are extremely low (200 fmol/L); the dynamic range for label quantification extends over six orders of magnitude; the labels are extremely stable compared with those of most other chemiluminescent systems; the labels, small molecules (approximately 1000 Da), can be used to label haptens or large molecules, and multiple labels can be coupled to proteins or oligonucleotides without affecting immunoreactivity, solubility, or ability to hybridize; because the chemiluminescence is initiated electrochemically, selectivity of bound and unbound fractions can be based on the ability of labeled species to access the electrode surface, so that both separation and nonseparation assays can be set up; and measurement is simple and rapid, requiring only a few seconds. We illustrate ECL in nonseparation immunoassays for digoxin and thyrotropin and in separation immunoassays for carcinoembryonic antigen and alpha-fetoprotein. The application of ECL for detection of polymerase chain reaction products is described and exemplified by quantifying the HIV1 gag gene.


2019 ◽  
Vol 36 (2) ◽  
pp. 45-53
Author(s):  
Muhammad Izzuddin Abd Samad ◽  
Muhamad Ramdzan Buyong ◽  
Shyong Siow Kim ◽  
Burhanuddin Yeop Majlis

Purpose The purpose of this paper is to use a particle velocity measurement technique on a tapered microelectrode device via changes of an applied voltage, which is an enhancement of the electric field density in influencing the dipole moment particles. Polystyrene microbeads (PM) have used to determine the responses of the dielectrophoresis (DEP) voltage based on the particle velocity technique. Design/methodology/approach Analytical modelling was used to simulate the particles’ polarization and their velocity based on the Clausius–Mossotti Factor (CMF) equation. The electric field intensity and DEP forces were simulated through the COMSOL numerical study of the variation of applied voltages such as 5 V p-p, 7 V p-p and 10 V p-p. Experimentally, the particle velocity on a tapered DEP response was quantified via the particle travelling distance over a time interval through a high-speed camera adapted to a high-precision non-contact depth measuring microscope. Findings The result of the particle velocity was found to increase, and the applied voltage has enhanced the particle trajectory on the tapered microelectrode, which confirmed its dependency on the electric field intensity at the top and bottom edges of the electrode. A higher magnitude of particle levitation was recorded with the highest particle velocity of 11.19 ± 4.43 µm/s at 1 MHz on 10 V p-p, compared to the lowest particle velocity with 0.62 ± 0.11 µm/s at 10 kHz on 7 V p-p. Practical implications This research can be applied for high throughout sensitivity and selectivity of particle manipulation in isolating and concentrating biological fluid for biomedical implications. Originality/value The comprehensive manipulation method based on the changes of the electrical potential of the tapered electrode was able to quantify the magnitude of the particle trajectory in accordance with the strong electric field density.


Sign in / Sign up

Export Citation Format

Share Document