Dielectrophoresis velocities response on tapered electrode profile: simulation and experimental

2019 ◽  
Vol 36 (2) ◽  
pp. 45-53
Author(s):  
Muhammad Izzuddin Abd Samad ◽  
Muhamad Ramdzan Buyong ◽  
Shyong Siow Kim ◽  
Burhanuddin Yeop Majlis

Purpose The purpose of this paper is to use a particle velocity measurement technique on a tapered microelectrode device via changes of an applied voltage, which is an enhancement of the electric field density in influencing the dipole moment particles. Polystyrene microbeads (PM) have used to determine the responses of the dielectrophoresis (DEP) voltage based on the particle velocity technique. Design/methodology/approach Analytical modelling was used to simulate the particles’ polarization and their velocity based on the Clausius–Mossotti Factor (CMF) equation. The electric field intensity and DEP forces were simulated through the COMSOL numerical study of the variation of applied voltages such as 5 V p-p, 7 V p-p and 10 V p-p. Experimentally, the particle velocity on a tapered DEP response was quantified via the particle travelling distance over a time interval through a high-speed camera adapted to a high-precision non-contact depth measuring microscope. Findings The result of the particle velocity was found to increase, and the applied voltage has enhanced the particle trajectory on the tapered microelectrode, which confirmed its dependency on the electric field intensity at the top and bottom edges of the electrode. A higher magnitude of particle levitation was recorded with the highest particle velocity of 11.19 ± 4.43 µm/s at 1 MHz on 10 V p-p, compared to the lowest particle velocity with 0.62 ± 0.11 µm/s at 10 kHz on 7 V p-p. Practical implications This research can be applied for high throughout sensitivity and selectivity of particle manipulation in isolating and concentrating biological fluid for biomedical implications. Originality/value The comprehensive manipulation method based on the changes of the electrical potential of the tapered electrode was able to quantify the magnitude of the particle trajectory in accordance with the strong electric field density.

Author(s):  
Anna Firych-Nowacka ◽  
Krzysztof Smolka ◽  
Sławomir Wiak

Purpose Electrospinning is a method of the polymer super thin fibres formation by the electrostatic field. The distribution of electrostatic field affects the effectiveness of the electrospinning. Design/methodology/approach This paper presents various computer models that can improve the electrospinning process. The possibilities of modelling the electrostatic field in the design of electrospinning equipment are presented. Findings In the research part, the one focussed on finding a cylinder-shaped collector structure to limit the adverse effect of an uneven distribution of the electric field intensity on the collector. Originality/value The paper concerns the improvement of the electrospinning process with the use of electrostatic field modelling. In the first part, several possible applications of electrostatic models have been indicated, thanks to which the efficiency of the process has been improved. The original solution of the collector geometry was presented, which according to the authors, in comparison with previous models, gives the most promising results. In this solution, it was possible to obtain an even distribution of the electric field intensity while removing the unfavourable effect of the field strength increase on the outer edges of the collector. The most important aspect in this paper is electric field strength analysis.


Author(s):  
Yongyang Zhu ◽  
Xuexian Wang ◽  
Dezhi Wu ◽  
Daoheng Sun

The influences of different applied voltages on spinnerets and distance between spinnerets are investigated when the spinnerets are arrayed in matrix shape in electrospinning. The models of one, two, three and nine spinnerets were set up and the electric field intensity was simulated and analyzed. By experiments, the voltage thresholds of ejection at different distance, the nanofibers electrospun by different distances between the spinnerets and different voltages were explored. The experiment results show that, in some extent of distance, the electric field intensity will decrease gradually with the distance between spinnerets rising. If the tips of multi-spinneret array are in the same distance to the collector, the voltage threshold of the center spinneret is extremely high and the solution is difficult to be ejected. If the same voltage is applied on multi-spinneret array, the quality of spinning becomes worse with the applied voltage increasing, that is, the nanofibers become more chaos and their diameters increase.


1979 ◽  
Vol 44 (3) ◽  
pp. 841-853 ◽  
Author(s):  
Zbyněk Ryšlavý ◽  
Petr Boček ◽  
Miroslav Deml ◽  
Jaroslav Janák

The problem of the longitudinal temperature distribution was solved and the bearing of the temperature profiles on the qualitative characteristics of the zones and on the interpretation of the record of the separation obtained from a universal detector was considered. Two approximative physical models were applied to the solution: in the first model, the temperature dependences of the mobilities are taken into account, the continuous character of the electric field intensity at the boundary being neglected; in the other model, the continuous character of the electric field intensity is allowed for. From a comparison of the two models it follows that in practice, the variations of the mobilities with the temperature are the principal factor affecting the shape of the temperature profiles, the assumption of a discontinuous jump of the electric field intensity at the boundary being a good approximation to the reality. It was deduced theoretically and verified experimentally that the longitudinal profiles can appreciably affect the longitudinal variation of the effective mobilities in the zone, with an infavourable influence upon the qualitative interpretation of the record. Pronounced effects can appear during the analyses of the minor components, where in the corresponding short zone a temperature distribution occurs due to the influence of the temperatures of the neighbouring zones such that the temperature in the zone of interest in fact does not attain a constant value in axial direction. The minor component does not possess the steady-state mobility throughout the zone, which makes the identification of the zone rather difficult.


2007 ◽  
Vol 21 (24) ◽  
pp. 1635-1642
Author(s):  
MIAN LIU ◽  
WENDONG MA ◽  
ZIJUN LI

We conducted a theoretical study on the properties of a polaron with electron-LO phonon strong-coupling in a cylindrical quantum dot under an electric field using linear combination operator and unitary transformation methods. The changing relations between the ground state energy of the polaron in the quantum dot and the electric field intensity, restricted intensity, and cylindrical height were derived. The numerical results show that the polar of the quantum dot is enlarged with increasing restricted intensity and decreasing cylindrical height, and with cylindrical height at 0 ~ 5 nm , the polar of the quantum dot is strongest. The ground state energy decreases with increasing electric field intensity, and at the moment of just adding electric field, quantum polarization is strongest.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1157
Author(s):  
Yong Liu ◽  
Xingwang Huang

Ceramic outdoor insulators play an important role in electrical insulation and mechanical support because of good chemical and thermal stability, which have been widely used in power systems. However, the brittleness and surface discharge of ceramic material greatly limit the application of ceramic insulators. From the perspective of sintering technology, flash sintering technology is used to improve the performance of ceramic insulators. In this paper, the simulation model of producing the ceramic insulator by the flash sintering technology was set up. Material Studio was used to study the influence of electric field intensity and temperature on the alumina unit cell. COMSOL was used to study the influence of electric field intensity and current density on sintering speed, density and grain size. Obtained results showed that under high temperature and high voltage, the volume of the unit cell becomes smaller and the atoms are arranged more closely. The increase of current density can result in higher ceramic density and larger grain size. With the electric field intensity increasing, incubation time shows a decreasing tendency and energy consumption is reduced. Ceramic insulators with a higher uniform structure and a smaller grain size can show better dielectric performance and higher flashover voltage.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1419
Author(s):  
Toshio Sugaya ◽  
Yukio Kawano

Terahertz waves are located in the frequency band between radio waves and light, and they are being considered for various applications as a light source. Generally, the use of light requires focusing; however, when a terahertz wave is irradiated onto a small detector or a small measurement sample, its wavelength, which is much longer than that of visible light, causes problems. The diffraction limit may make it impossible to focus the terahertz light down to the desired range by using common lenses. The Bull’s Eye structure, which is a plasmonic structure, is a promising tool for focusing the terahertz light beyond the diffraction limit and into the sub-wavelength region. By utilizing the surface plasmon propagation, the electric field intensity and transmission coefficient can be enhanced. In this study, we improved the electric field intensity and light focusing in a small region by adapting the solid immersion method (SIM) from our previous study, which had a frequency-tunable nonconcentric Bull’s Eye structure. Through electromagnetic field analysis, the electric field intensity was confirmed to be approximately 20 times higher than that of the case without the SIM, and the transmission measurements confirmed that the transmission through an aperture had a gap of 1/20 that of the wavelength. This fabricated device can be used in imaging and sensing applications because of the close contact between the transmission aperture and the measurement sample.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Bing Wei ◽  
Le Cao ◽  
Fei Wang ◽  
Qian Yang

According to the characteristics of the polarizability in frequency domain of three common models of dispersive media, the relation between the polarization vector and electric field intensity is converted into a time domain differential equation of second order with the polarization vector by using the conversion from frequency to time domain. Newmarkβγdifference method is employed to solve this equation. The electric field intensity to polarizability recursion is derived, and the electric flux to electric field intensity recursion is obtained by constitutive relation. Then FDTD iterative computation in time domain of electric and magnetic field components in dispersive medium is completed. By analyzing the solution stability of the above differential equation using central difference method, it is proved that this method has more advantages in the selection of time step. Theoretical analyses and numerical results demonstrate that this method is a general algorithm and it has advantages of higher accuracy and stability over the algorithms based on central difference method.


Sign in / Sign up

Export Citation Format

Share Document